diff --git a/utils/utils.py b/utils/utils.py index ed568247..f8ac0db6 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -345,7 +345,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1) - v = (pred[:, 4] > (conf_thres * class_prob)) # TODO examine arbitrary 0.3 thres here + v = ((pred[:, 4] > conf_thres) & (class_prob > .1)) # TODO examine arbitrary 0.3 thres here v = v.nonzero().squeeze() if len(v.shape) == 0: v = v.unsqueeze(0) @@ -369,7 +369,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): if prediction.is_cuda: unique_labels = unique_labels.cuda(prediction.device) - nms_style = 'OR' # 'OR' (default), 'AND', 'MERGE' (experimental) + nms_style = 'MERGE' # 'OR' (default), 'AND', 'MERGE' (experimental) for c in unique_labels: # Get the detections with class c dc = detections[detections[:, -1] == c] @@ -389,7 +389,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): # Image Total P R mAP # 5000 5000 0.627 0.593 0.584 - # 4964 5000 0.629 0.594 0.586 # complete probability sort + # 4964 5000 0.629 0.594 0.586 # complete probability sort elif nms_style == 'AND': # requires overlap, single boxes erased