updates
This commit is contained in:
parent
b7a25e60ce
commit
ba265d91b2
87
train.py
87
train.py
|
@ -53,7 +53,7 @@ def train():
|
||||||
cfg = opt.cfg
|
cfg = opt.cfg
|
||||||
data = opt.data
|
data = opt.data
|
||||||
img_size = opt.img_size
|
img_size = opt.img_size
|
||||||
epochs = 1 if opt.prebias else opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
|
epochs = opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
|
||||||
batch_size = opt.batch_size
|
batch_size = opt.batch_size
|
||||||
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
|
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
|
||||||
weights = opt.weights # initial training weights
|
weights = opt.weights # initial training weights
|
||||||
|
@ -65,8 +65,8 @@ def train():
|
||||||
# Initialize
|
# Initialize
|
||||||
init_seeds()
|
init_seeds()
|
||||||
if opt.multi_scale:
|
if opt.multi_scale:
|
||||||
img_sz_min = 9 # round(img_size / 32 / 1.5)
|
img_sz_min = round(img_size / 32 / 1.5)
|
||||||
img_sz_max = 21 # round(img_size / 32 * 1.5)
|
img_sz_max = round(img_size / 32 * 1.5)
|
||||||
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
|
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
|
||||||
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
|
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
|
||||||
|
|
||||||
|
@ -136,16 +136,6 @@ def train():
|
||||||
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
|
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
|
||||||
cutoff = load_darknet_weights(model, weights)
|
cutoff = load_darknet_weights(model, weights)
|
||||||
|
|
||||||
if opt.prebias:
|
|
||||||
# Update params (bias-only training allows more aggressive settings: i.e. SGD ~0.1 lr0, ~0.9 momentum)
|
|
||||||
for p in optimizer.param_groups:
|
|
||||||
p['lr'] = 0.1 # learning rate
|
|
||||||
if p.get('momentum') is not None: # for SGD but not Adam
|
|
||||||
p['momentum'] = 0.9
|
|
||||||
|
|
||||||
for name, p in model.named_parameters():
|
|
||||||
p.requires_grad = True if name.endswith('.bias') else False
|
|
||||||
|
|
||||||
# Scheduler https://github.com/ultralytics/yolov3/issues/238
|
# Scheduler https://github.com/ultralytics/yolov3/issues/238
|
||||||
# lf = lambda x: 1 - x / epochs # linear ramp to zero
|
# lf = lambda x: 1 - x / epochs # linear ramp to zero
|
||||||
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
|
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
|
||||||
|
@ -186,7 +176,7 @@ def train():
|
||||||
rect=opt.rect, # rectangular training
|
rect=opt.rect, # rectangular training
|
||||||
image_weights=False,
|
image_weights=False,
|
||||||
cache_labels=epochs > 10,
|
cache_labels=epochs > 10,
|
||||||
cache_images=opt.cache_images and not opt.prebias)
|
cache_images=opt.cache_images)
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
batch_size = min(batch_size, len(dataset))
|
batch_size = min(batch_size, len(dataset))
|
||||||
|
@ -198,17 +188,16 @@ def train():
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
collate_fn=dataset.collate_fn)
|
collate_fn=dataset.collate_fn)
|
||||||
|
|
||||||
# Test Dataloader
|
# Testloader
|
||||||
if not opt.prebias:
|
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, opt.img_size, batch_size * 2,
|
||||||
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, opt.img_size, batch_size * 2,
|
hyp=hyp,
|
||||||
hyp=hyp,
|
rect=True,
|
||||||
rect=True,
|
cache_labels=True,
|
||||||
cache_labels=True,
|
cache_images=opt.cache_images),
|
||||||
cache_images=opt.cache_images),
|
batch_size=batch_size * 2,
|
||||||
batch_size=batch_size * 2,
|
num_workers=nw,
|
||||||
num_workers=nw,
|
pin_memory=True,
|
||||||
pin_memory=True,
|
collate_fn=dataset.collate_fn)
|
||||||
collate_fn=dataset.collate_fn)
|
|
||||||
|
|
||||||
# Start training
|
# Start training
|
||||||
nb = len(dataloader)
|
nb = len(dataloader)
|
||||||
|
@ -222,11 +211,26 @@ def train():
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
|
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
|
||||||
print('Using %g dataloader workers' % nw)
|
print('Using %g dataloader workers' % nw)
|
||||||
print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
|
print('Starting training for %g epochs...' % epochs)
|
||||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
for epoch in range(start_epoch - 1 if opt.prebias else start_epoch, epochs): # epoch ------------------------------
|
||||||
model.train()
|
model.train()
|
||||||
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||||
|
|
||||||
|
# Prebias
|
||||||
|
if opt.prebias:
|
||||||
|
if epoch < 0: # prebias
|
||||||
|
ps = 0.1, 0.9, False # prebias settings (lr=0.1, momentum=0.9, requires_grad=False)
|
||||||
|
else: # normal training
|
||||||
|
ps = hyp['lr0'], hyp['momentum'], True # normal training settings
|
||||||
|
opt.prebias = False
|
||||||
|
|
||||||
|
for p in optimizer.param_groups:
|
||||||
|
p['lr'] = ps[0] # learning rate
|
||||||
|
if p.get('momentum') is not None: # for SGD but not Adam
|
||||||
|
p['momentum'] = ps[1]
|
||||||
|
for name, p in model.named_parameters():
|
||||||
|
p.requires_grad = True if name.endswith('.bias') else ps[2]
|
||||||
|
|
||||||
# Update image weights (optional)
|
# Update image weights (optional)
|
||||||
if dataset.image_weights:
|
if dataset.image_weights:
|
||||||
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
||||||
|
@ -300,13 +304,11 @@ def train():
|
||||||
|
|
||||||
# end batch ------------------------------------------------------------------------------------------------
|
# end batch ------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
# Update scheduler
|
|
||||||
scheduler.step()
|
|
||||||
|
|
||||||
# Process epoch results
|
# Process epoch results
|
||||||
final_epoch = epoch + 1 == epochs
|
final_epoch = epoch + 1 == epochs
|
||||||
if opt.prebias:
|
if opt.prebias:
|
||||||
print_model_biases(model)
|
print_model_biases(model)
|
||||||
|
continue
|
||||||
elif not opt.notest or final_epoch: # Calculate mAP
|
elif not opt.notest or final_epoch: # Calculate mAP
|
||||||
is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
|
is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
|
||||||
results, maps = test.test(cfg,
|
results, maps = test.test(cfg,
|
||||||
|
@ -319,10 +321,13 @@ def train():
|
||||||
save_json=final_epoch and is_coco,
|
save_json=final_epoch and is_coco,
|
||||||
dataloader=testloader)
|
dataloader=testloader)
|
||||||
|
|
||||||
|
# Update scheduler
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
# Write epoch results
|
# Write epoch results
|
||||||
with open(results_file, 'a') as f:
|
with open(results_file, 'a') as f:
|
||||||
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
||||||
if len(opt.name) and opt.bucket and not opt.prebias:
|
if len(opt.name) and opt.bucket:
|
||||||
os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
|
os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
|
||||||
|
|
||||||
# Write Tensorboard results
|
# Write Tensorboard results
|
||||||
|
@ -339,7 +344,7 @@ def train():
|
||||||
best_fitness = fitness
|
best_fitness = fitness
|
||||||
|
|
||||||
# Save training results
|
# Save training results
|
||||||
save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
|
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
||||||
if save:
|
if save:
|
||||||
with open(results_file, 'r') as f:
|
with open(results_file, 'r') as f:
|
||||||
# Create checkpoint
|
# Create checkpoint
|
||||||
|
@ -368,7 +373,7 @@ def train():
|
||||||
|
|
||||||
# end training
|
# end training
|
||||||
n = opt.name
|
n = opt.name
|
||||||
if len(n) and not opt.prebias:
|
if len(n):
|
||||||
n = '_' + n if not n.isnumeric() else n
|
n = '_' + n if not n.isnumeric() else n
|
||||||
fresults, flast, fbest = 'results%s.txt' % n, 'last%s.pt' % n, 'best%s.pt' % n
|
fresults, flast, fbest = 'results%s.txt' % n, 'last%s.pt' % n, 'best%s.pt' % n
|
||||||
os.rename('results.txt', fresults)
|
os.rename('results.txt', fresults)
|
||||||
|
@ -387,20 +392,6 @@ def train():
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def prebias():
|
|
||||||
# trains output bias layers for 1 epoch and creates new backbone
|
|
||||||
if opt.prebias:
|
|
||||||
# opt_0 = opt # save settings
|
|
||||||
# opt.rect = False # update settings (if any)
|
|
||||||
|
|
||||||
train() # train model biases
|
|
||||||
create_backbone(last) # saved results as backbone.pt
|
|
||||||
|
|
||||||
# opt = opt_0 # reset settings
|
|
||||||
opt.weights = wdir + 'backbone.pt' # assign backbone
|
|
||||||
opt.prebias = False # disable prebias
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 COCO images = 273 epochs
|
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 COCO images = 273 epochs
|
||||||
|
@ -444,7 +435,6 @@ if __name__ == '__main__':
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
prebias() # optional
|
|
||||||
train() # train normally
|
train() # train normally
|
||||||
|
|
||||||
else: # Evolve hyperparameters (optional)
|
else: # Evolve hyperparameters (optional)
|
||||||
|
@ -483,7 +473,6 @@ if __name__ == '__main__':
|
||||||
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
||||||
|
|
||||||
# Train mutation
|
# Train mutation
|
||||||
prebias()
|
|
||||||
results = train()
|
results = train()
|
||||||
|
|
||||||
# Write mutation results
|
# Write mutation results
|
||||||
|
|
|
@ -8,7 +8,9 @@
|
||||||
#t=ultralytics/yolov3:v199 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 672 --epochs 10 --batch 16 --accum 4 --weights '' --arc defaultpw --device 0 --multi
|
#t=ultralytics/yolov3:v199 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 672 --epochs 10 --batch 16 --accum 4 --weights '' --arc defaultpw --device 0 --multi
|
||||||
|
|
||||||
while true; do
|
while true; do
|
||||||
python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 100 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --evolve --device $1 --cfg yolov3-tiny-3cls.cfg
|
python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 100 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --evolve --device $1 --cfg yolov3-tiny-3cls.cfg --cache
|
||||||
|
# python3 train.py --data ../out/data.data --img-size 608 --epochs 10 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ult/athena --evolve --device $1
|
||||||
|
|
||||||
# python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch 22 --accum 3 --evolve --weights '' --arc defaultpw --pre --bucket yolov4/640ms_coco2014_10e --device $1 --multi
|
# python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch 22 --accum 3 --evolve --weights '' --arc defaultpw --pre --bucket yolov4/640ms_coco2014_10e --device $1 --multi
|
||||||
# python3 train.py --data coco2014.data --img-size 320 --epochs 27 --batch 64 --accum 1 --evolve --weights '' --arc defaultpw --pre --bucket yolov4/320_coco2014_27e --device $1
|
# python3 train.py --data coco2014.data --img-size 320 --epochs 27 --batch 64 --accum 1 --evolve --weights '' --arc defaultpw --pre --bucket yolov4/320_coco2014_27e --device $1
|
||||||
done
|
done
|
||||||
|
|
|
@ -40,12 +40,13 @@ python3 test.py --save-json
|
||||||
# Evolve
|
# Evolve
|
||||||
t=ultralytics/yolov3:v206
|
t=ultralytics/yolov3:v206
|
||||||
sudo docker kill $(sudo docker ps -a -q --filter ancestor=$t)
|
sudo docker kill $(sudo docker ps -a -q --filter ancestor=$t)
|
||||||
for i in 0 1 2 3 4 5 6 7
|
for i in 0 1 2 3
|
||||||
do
|
do
|
||||||
sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t bash utils/evolve.sh $i
|
sudo docker pull $t && sudo docker run --gpus all -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t bash utils/evolve.sh $i
|
||||||
|
# sudo docker pull $t && sudo docker run --gpus all -d --ipc=host -v "$(pwd)"/out:/usr/src/out $t bash utils/evolve.sh $i
|
||||||
# sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash utils/evolve.sh $i
|
# sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash utils/evolve.sh $i
|
||||||
# sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v /mnt/disks/nvme0n1/coco:/usr/src/coco $t bash utils/evolve.sh $i
|
# sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v /mnt/disks/nvme0n1/coco:/usr/src/coco $t bash utils/evolve.sh $i
|
||||||
sleep 1
|
sleep 120
|
||||||
done
|
done
|
||||||
|
|
||||||
|
|
||||||
|
@ -257,6 +258,7 @@ n=198 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker r
|
||||||
n=199 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 0
|
n=199 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 0
|
||||||
n=200 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 6
|
n=200 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 6
|
||||||
n=207 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 7
|
n=207 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 100 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --bucket ultralytics/athena --name $n --device 7
|
||||||
|
n=208 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo docker run --gpus all --ipc=host -v "$(pwd)"/out:/usr/src/out $t python3 train.py --data ../out/data.data --img-size 608 --epochs 10 --batch 8 --accum 8 --weights ultralytics68.pt --arc defaultpw --pre --multi --device 0
|
||||||
|
|
||||||
# sm4
|
# sm4
|
||||||
n=201 && t=ultralytics/yolov3:v201 && sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 0 --cfg yolov3-tiny-3cls.cfg
|
n=201 && t=ultralytics/yolov3:v201 && sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 0 --cfg yolov3-tiny-3cls.cfg
|
||||||
|
@ -265,3 +267,4 @@ n=203 && t=ultralytics/yolov3:v201 && sudo docker pull $t && sudo nvidia-docker
|
||||||
n=204 && t=ultralytics/yolov3:v202 && sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 3 --cfg yolov3-tiny-3cls-sm4.cfg
|
n=204 && t=ultralytics/yolov3:v202 && sudo docker pull $t && sudo nvidia-docker run -d --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 3 --cfg yolov3-tiny-3cls-sm4.cfg
|
||||||
n=205 && t=ultralytics/yolov3:v202 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights '' --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 4 --cfg yolov3-tiny-3cls-sm4.cfg
|
n=205 && t=ultralytics/yolov3:v202 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 1000 --batch 64 --accum 1 --weights '' --arc defaultpw --pre --multi --bucket ult/wer --name $n --device 4 --cfg yolov3-tiny-3cls-sm4.cfg
|
||||||
|
|
||||||
|
n=206 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo docker run --gpus all -it --ipc=host -v "$(pwd)"/data:/usr/src/data $t python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 100 --batch 64 --accum 1 --weights yolov3-tiny.pt --arc defaultpw --pre --multi --notest --nosave --cache --device 0 --cfg yolov3-tiny-3cls.cfg
|
||||||
|
|
|
@ -633,7 +633,7 @@ def get_yolo_layers(model):
|
||||||
|
|
||||||
def print_model_biases(model):
|
def print_model_biases(model):
|
||||||
# prints the bias neurons preceding each yolo layer
|
# prints the bias neurons preceding each yolo layer
|
||||||
print('\nModel Bias Summary (per output layer):')
|
print('\nModel Bias Summary:')
|
||||||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
for l in model.yolo_layers: # print pretrained biases
|
for l in model.yolo_layers: # print pretrained biases
|
||||||
if multi_gpu:
|
if multi_gpu:
|
||||||
|
@ -642,7 +642,7 @@ def print_model_biases(model):
|
||||||
else:
|
else:
|
||||||
na = model.module_list[l].na
|
na = model.module_list[l].na
|
||||||
b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85
|
b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85
|
||||||
print('regression: %5.2f+/-%-5.2f ' % (b[:, :4].mean(), b[:, :4].std()),
|
print('layer %3g regression: %5.2f+/-%-5.2f ' % (l, b[:, :4].mean(), b[:, :4].std()),
|
||||||
'objectness: %5.2f+/-%-5.2f ' % (b[:, 4].mean(), b[:, 4].std()),
|
'objectness: %5.2f+/-%-5.2f ' % (b[:, 4].mean(), b[:, 4].std()),
|
||||||
'classification: %5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std()))
|
'classification: %5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std()))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue