updates
This commit is contained in:
parent
54ebb2e593
commit
b5ec9cb128
15
utils/gcp.sh
15
utils/gcp.sh
|
@ -50,9 +50,18 @@ git clone https://github.com/ultralytics/yolov3 # master
|
||||||
cp -r weights yolov3
|
cp -r weights yolov3
|
||||||
cp -r cocoapi/PythonAPI/pycocotools yolov3
|
cp -r cocoapi/PythonAPI/pycocotools yolov3
|
||||||
cd yolov3
|
cd yolov3
|
||||||
python3 test.py --save-json
|
|
||||||
|
|
||||||
git pull https://github.com/ultralytics/yolov3
|
mv ../utils.py utils
|
||||||
python3 train.py --data-cfg data/coco_1img.data
|
|
||||||
|
rm results*.txt # WARNING: removes existing results
|
||||||
|
python3 train.py --nosave --data data/coco_1img.data && mv results.txt resultsn_1img.txt
|
||||||
|
python3 train.py --nosave --data data/coco_10img.data && mv results.txt resultsn_10img.txt
|
||||||
|
python3 train.py --nosave --data data/coco_100img.data && mv results.txt resultsn_100img.txt
|
||||||
|
python3 train.py --nosave --data data/coco_100img.data --transfer && mv results.txt resultsn_100imgTL.txt
|
||||||
|
# python3 train.py --nosave --data data/coco_1000img.data && mv results.txt results_1000img.txt
|
||||||
|
python3 -c "from utils import utils; utils.plot_results()"
|
||||||
|
gsutil cp results*.txt gs://ultralytics
|
||||||
|
gsutil cp results.png gs://ultralytics
|
||||||
|
sudo shutdown
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -243,9 +243,10 @@ def wh_iou(box1, box2):
|
||||||
|
|
||||||
|
|
||||||
def compute_loss(p, targets): # predictions, targets
|
def compute_loss(p, targets): # predictions, targets
|
||||||
FT = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
||||||
lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0])
|
lxy, lwh, lcls, lconf = ft([0]), ft([0]), ft([0]), ft([0])
|
||||||
txy, twh, tcls, indices = targets
|
txy, twh, tcls, indices = targets
|
||||||
|
bs = p[0].shape[0] # batch size
|
||||||
MSE = nn.MSELoss()
|
MSE = nn.MSELoss()
|
||||||
CE = nn.CrossEntropyLoss()
|
CE = nn.CrossEntropyLoss()
|
||||||
BCE = nn.BCEWithLogitsLoss()
|
BCE = nn.BCEWithLogitsLoss()
|
||||||
|
@ -255,22 +256,21 @@ def compute_loss(p, targets): # predictions, targets
|
||||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||||
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
|
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
|
||||||
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
||||||
nt = len(b) # number of targets
|
|
||||||
|
|
||||||
# Compute losses
|
# Compute losses
|
||||||
k = 1 # nt / bs
|
k = 8.4875 * bs
|
||||||
if nt:
|
if len(b): # number of targets
|
||||||
pi = pi0[b, a, gj, gi] # predictions closest to anchors
|
pi = pi0[b, a, gj, gi] # predictions closest to anchors
|
||||||
tconf[b, a, gj, gi] = 1 # conf
|
tconf[b, a, gj, gi] = 1 # conf
|
||||||
|
|
||||||
lxy += (k * 8) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
|
lxy += (k * 0.07934) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
|
||||||
lwh += (k * 1) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
lwh += (k * 0.01561) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
||||||
# lwh += (k * 1) * MSE(torch.sigmoid(pi[..., 2:4]), twh[i]) # wh power loss
|
# lwh += (k * 0.01561) * MSE(torch.sigmoid(pi[..., 2:4]), twh[i]) # wh power loss
|
||||||
lcls += (k * 1) * CE(pi[..., 5:], tcls[i]) # class_conf loss
|
lcls += (k * 0.02094) * CE(pi[..., 5:], tcls[i]) # class_conf loss
|
||||||
|
|
||||||
# pos_weight = FT([gp[i] / min(gp) * 4.])
|
# pos_weight = ft([gp[i] / min(gp) * 4.])
|
||||||
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
||||||
lconf += (k * 64) * BCE(pi0[..., 4], tconf) # obj_conf loss
|
lconf += (k * 0.8841) * BCE(pi0[..., 4], tconf) # obj_conf loss
|
||||||
loss = lxy + lwh + lconf + lcls
|
loss = lxy + lwh + lconf + lcls
|
||||||
|
|
||||||
return loss, torch.cat((lxy, lwh, lconf, lcls, loss)).detach()
|
return loss, torch.cat((lxy, lwh, lconf, lcls, loss)).detach()
|
||||||
|
|
Loading…
Reference in New Issue