updates
This commit is contained in:
parent
0bfc4bcee3
commit
af9864de7b
|
@ -18,8 +18,8 @@ parser.add_argument('-txt_out', type=bool, default=False)
|
||||||
|
|
||||||
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||||
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
|
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
|
||||||
parser.add_argument('-conf_thres', type=float, default=0.8, help='object confidence threshold')
|
parser.add_argument('-conf_thres', type=float, default=0.99, help='object confidence threshold')
|
||||||
parser.add_argument('-nms_thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
|
parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
||||||
parser.add_argument('-batch_size', type=int, default=1, help='size of the batches')
|
parser.add_argument('-batch_size', type=int, default=1, help='size of the batches')
|
||||||
parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension')
|
parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
|
@ -33,7 +33,8 @@ def detect(opt):
|
||||||
# Load model
|
# Load model
|
||||||
model = Darknet(opt.cfg, opt.img_size)
|
model = Darknet(opt.cfg, opt.img_size)
|
||||||
|
|
||||||
weights_path = 'checkpoints/yolov3.weights'
|
#weights_path = 'checkpoints/yolov3.weights'
|
||||||
|
weights_path = 'checkpoints/latest.pt'
|
||||||
if weights_path.endswith('.weights'): # saved in darknet format
|
if weights_path.endswith('.weights'): # saved in darknet format
|
||||||
load_weights(model, weights_path)
|
load_weights(model, weights_path)
|
||||||
else: # endswith('.pt'), saved in pytorch format
|
else: # endswith('.pt'), saved in pytorch format
|
||||||
|
@ -130,7 +131,7 @@ def detect(opt):
|
||||||
|
|
||||||
if opt.plot_flag:
|
if opt.plot_flag:
|
||||||
# Add the bbox to the plot
|
# Add the bbox to the plot
|
||||||
label = '%s %.2f' % (classes[int(cls_pred)], cls_conf) if cls_conf > 0.05 else None
|
label = '%s %.2f' % (classes[int(cls_pred)], conf)
|
||||||
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
|
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
|
||||||
plot_one_box([x1, y1, x2, y2], img, label=label, color=color, line_thickness=3)
|
plot_one_box([x1, y1, x2, y2], img, label=label, color=color, line_thickness=3)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue