updates
This commit is contained in:
		
							parent
							
								
									0bfc4bcee3
								
							
						
					
					
						commit
						af9864de7b
					
				|  | @ -18,8 +18,8 @@ parser.add_argument('-txt_out', type=bool, default=False) | ||||||
| 
 | 
 | ||||||
| parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') | parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') | ||||||
| parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file') | parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file') | ||||||
| parser.add_argument('-conf_thres', type=float, default=0.8, help='object confidence threshold') | parser.add_argument('-conf_thres', type=float, default=0.99, help='object confidence threshold') | ||||||
| parser.add_argument('-nms_thres', type=float, default=0.5, help='iou threshold for non-maximum suppression') | parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') | ||||||
| parser.add_argument('-batch_size', type=int, default=1, help='size of the batches') | parser.add_argument('-batch_size', type=int, default=1, help='size of the batches') | ||||||
| parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension') | parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension') | ||||||
| opt = parser.parse_args() | opt = parser.parse_args() | ||||||
|  | @ -33,7 +33,8 @@ def detect(opt): | ||||||
|     # Load model |     # Load model | ||||||
|     model = Darknet(opt.cfg, opt.img_size) |     model = Darknet(opt.cfg, opt.img_size) | ||||||
| 
 | 
 | ||||||
|     weights_path = 'checkpoints/yolov3.weights' |     #weights_path = 'checkpoints/yolov3.weights' | ||||||
|  |     weights_path = 'checkpoints/latest.pt' | ||||||
|     if weights_path.endswith('.weights'):  # saved in darknet format |     if weights_path.endswith('.weights'):  # saved in darknet format | ||||||
|         load_weights(model, weights_path) |         load_weights(model, weights_path) | ||||||
|     else:  # endswith('.pt'), saved in pytorch format |     else:  # endswith('.pt'), saved in pytorch format | ||||||
|  | @ -130,7 +131,7 @@ def detect(opt): | ||||||
| 
 | 
 | ||||||
|                 if opt.plot_flag: |                 if opt.plot_flag: | ||||||
|                     # Add the bbox to the plot |                     # Add the bbox to the plot | ||||||
|                     label = '%s %.2f' % (classes[int(cls_pred)], cls_conf) if cls_conf > 0.05 else None |                     label = '%s %.2f' % (classes[int(cls_pred)], conf) | ||||||
|                     color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])] |                     color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])] | ||||||
|                     plot_one_box([x1, y1, x2, y2], img, label=label, color=color, line_thickness=3) |                     plot_one_box([x1, y1, x2, y2], img, label=label, color=color, line_thickness=3) | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue