updates
This commit is contained in:
parent
fcda9a2fa0
commit
acfe4aaf94
29
detect.py
29
detect.py
|
@ -7,6 +7,7 @@ from utils.utils import *
|
|||
|
||||
from utils import torch_utils
|
||||
|
||||
|
||||
def detect(
|
||||
net_config_path,
|
||||
data_config_path,
|
||||
|
@ -68,7 +69,8 @@ def detect(
|
|||
# cv2.imwrite('zidane_416.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # letterboxed
|
||||
img = torch.from_numpy(img).unsqueeze(0).to(device)
|
||||
if ONNX_EXPORT:
|
||||
pred = torch.onnx._export(model, img, 'weights/model.onnx', verbose=True); return # ONNX export
|
||||
pred = torch.onnx._export(model, img, 'weights/model.onnx', verbose=True);
|
||||
return # ONNX export
|
||||
pred = model(img)
|
||||
pred = pred[pred[:, :, 4] > conf_thres]
|
||||
|
||||
|
@ -90,18 +92,17 @@ def detect(
|
|||
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
|
||||
print("image %g: '%s'" % (img_i, path))
|
||||
|
||||
if save_images:
|
||||
img = cv2.imread(path)
|
||||
|
||||
# The amount of padding that was added
|
||||
pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
|
||||
pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape))
|
||||
# Image height and width after padding is removed
|
||||
unpad_h = img_size - pad_y
|
||||
unpad_w = img_size - pad_x
|
||||
|
||||
# Draw bounding boxes and labels of detections
|
||||
if detections is not None:
|
||||
img = cv2.imread(path)
|
||||
|
||||
# The amount of padding that was added
|
||||
pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
|
||||
pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape))
|
||||
# Image height and width after padding is removed
|
||||
unpad_h = img_size - pad_y
|
||||
unpad_w = img_size - pad_x
|
||||
|
||||
unique_classes = detections[:, -1].cpu().unique()
|
||||
bbox_colors = random.sample(color_list, len(unique_classes))
|
||||
|
||||
|
@ -136,9 +137,9 @@ def detect(
|
|||
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
|
||||
plot_one_box([x1, y1, x2, y2], img, label=label, color=color)
|
||||
|
||||
if save_images:
|
||||
# Save generated image with detections
|
||||
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
|
||||
if save_images:
|
||||
# Save generated image with detections
|
||||
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
|
||||
|
||||
if platform == 'darwin': # MacOS (local)
|
||||
os.system('open ' + output)
|
||||
|
|
Loading…
Reference in New Issue