updates
This commit is contained in:
parent
9ee59fe694
commit
a8f0a3fede
|
@ -29,7 +29,7 @@ data/*
|
||||||
!data/coco_*.txt
|
!data/coco_*.txt
|
||||||
!data/trainvalno5k.shapes
|
!data/trainvalno5k.shapes
|
||||||
!data/5k.shapes
|
!data/5k.shapes
|
||||||
|
!data/5k.txt
|
||||||
|
|
||||||
pycocotools/*
|
pycocotools/*
|
||||||
results*.txt
|
results*.txt
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,6 @@
|
||||||
|
classes=80
|
||||||
|
train=./data/coco_1000img.txt
|
||||||
|
valid=./data/5k.txt
|
||||||
|
names=data/coco.names
|
||||||
|
backup=backup/
|
||||||
|
eval=coco
|
70
train.py
70
train.py
|
@ -11,34 +11,32 @@ from utils.datasets import *
|
||||||
from utils.utils import *
|
from utils.utils import *
|
||||||
|
|
||||||
# Hyperparameters
|
# Hyperparameters
|
||||||
# 0.861 0.956 0.936 0.897 1.51 10.39 0.1367 0.01057 0.01181 0.8409 0.1287 0.001028 -3.441 0.9127 0.0004841
|
# Evolved with python3 train.py --evolve --data data/coco_1k5k.data --epochs 50 --img-size 320
|
||||||
hyp = {'k': 10.39, # loss multiple
|
hyp = {'xy': 0.5, # xy loss gain
|
||||||
'xy': 0.1367, # xy loss fraction
|
'wh': 0.0625, # wh loss gain
|
||||||
'wh': 0.01057, # wh loss fraction
|
'cls': 0.0625, # cls loss gain
|
||||||
'cls': 0.01181, # cls loss fraction
|
'conf': 4, # conf loss gain
|
||||||
'conf': 0.8409, # conf loss fraction
|
'iou_t': 0.1, # iou target-anchor training threshold
|
||||||
'iou_t': 0.1287, # iou target-anchor training threshold
|
'lr0': 0.001, # initial learning rate
|
||||||
'lr0': 0.001028, # initial learning rate
|
'lrf': -5., # final learning rate = lr0 * (10 ** lrf)
|
||||||
'lrf': -3.441, # final learning rate = lr0 * (10 ** lrf)
|
'momentum': 0.9, # SGD momentum
|
||||||
'momentum': 0.9127, # SGD momentum
|
'weight_decay': 0.0005, # optimizer weight decay
|
||||||
'weight_decay': 0.0004841, # optimizer weight decay
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Original
|
||||||
# 0.856 0.95 0.935 0.887 1.3 8.488 0.1081 0.01351 0.01351 0.8649 0.1 0.001 -3 0.9 0.0005
|
# hyp = {'xy': 0.5, # xy loss gain
|
||||||
# hyp = {'k': 8.4875, # loss multiple
|
# 'wh': 0.0625, # wh loss gain
|
||||||
# 'xy': 0.108108, # xy loss fraction
|
# 'cls': 0.0625, # cls loss gain
|
||||||
# 'wh': 0.013514, # wh loss fraction
|
# 'conf': 4, # conf loss gain
|
||||||
# 'cls': 0.013514, # cls loss fraction
|
|
||||||
# 'conf': 0.86486, # conf loss fraction
|
|
||||||
# 'iou_t': 0.1, # iou target-anchor training threshold
|
# 'iou_t': 0.1, # iou target-anchor training threshold
|
||||||
# 'lr0': 0.001, # initial learning rate
|
# 'lr0': 0.001, # initial learning rate
|
||||||
# 'lrf': -3., # final learning rate = lr0 * (10 ** lrf)
|
# 'lrf': -5., # final learning rate = lr0 * (10 ** lrf)
|
||||||
# 'momentum': 0.9, # SGD momentum
|
# 'momentum': 0.9, # SGD momentum
|
||||||
# 'weight_decay': 0.0005, # optimizer weight decay
|
# 'weight_decay': 0.0005, # optimizer weight decay
|
||||||
# }
|
# }
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def train(
|
def train(
|
||||||
cfg,
|
cfg,
|
||||||
data_cfg,
|
data_cfg,
|
||||||
|
@ -279,7 +277,7 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
||||||
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
|
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
|
||||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
||||||
parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path')
|
parser.add_argument('--data-cfg', type=str, default='data/coco_100img.data', help='coco.data file path')
|
||||||
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
||||||
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
|
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
|
||||||
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
||||||
|
@ -326,7 +324,7 @@ if __name__ == '__main__':
|
||||||
# Mutate hyperparameters
|
# Mutate hyperparameters
|
||||||
old_hyp = hyp.copy()
|
old_hyp = hyp.copy()
|
||||||
init_seeds(seed=int(time.time()))
|
init_seeds(seed=int(time.time()))
|
||||||
s = [.2, .2, .2, .2, .2, .3, .2, .2, .02, .3]
|
s = [.2, .2, .2, .2, .2, .3, .2, .2, .01, .3]
|
||||||
for i, k in enumerate(hyp.keys()):
|
for i, k in enumerate(hyp.keys()):
|
||||||
x = (np.random.randn(1) * s[i] + 1) ** 1.1 # plt.hist(x.ravel(), 100)
|
x = (np.random.randn(1) * s[i] + 1) ** 1.1 # plt.hist(x.ravel(), 100)
|
||||||
hyp[k] = hyp[k] * float(x) # vary by about 30% 1sigma
|
hyp[k] = hyp[k] * float(x) # vary by about 30% 1sigma
|
||||||
|
@ -337,12 +335,6 @@ if __name__ == '__main__':
|
||||||
for k, v in zip(keys, limits):
|
for k, v in zip(keys, limits):
|
||||||
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
||||||
|
|
||||||
# Normalize loss components (sum to 1)
|
|
||||||
keys = ['xy', 'wh', 'cls', 'conf']
|
|
||||||
s = sum([v for k, v in hyp.items() if k in keys])
|
|
||||||
for k in keys:
|
|
||||||
hyp[k] /= s
|
|
||||||
|
|
||||||
# Determine mutation fitness
|
# Determine mutation fitness
|
||||||
results = train(
|
results = train(
|
||||||
opt.cfg,
|
opt.cfg,
|
||||||
|
@ -368,13 +360,17 @@ if __name__ == '__main__':
|
||||||
else:
|
else:
|
||||||
hyp = old_hyp.copy() # reset hyp to
|
hyp = old_hyp.copy() # reset hyp to
|
||||||
|
|
||||||
# # Plot results
|
# Plot results
|
||||||
# import numpy as np
|
import numpy as np
|
||||||
# import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
#
|
a = np.loadtxt('evolve_1000val.txt')
|
||||||
# a = np.loadtxt('evolve.txt')
|
x = a[:, 2] * a[:, 3] # metric = mAP * F1
|
||||||
# x = a[:, 3]
|
weights = (x - x.min()) ** 2
|
||||||
# fig = plt.figure(figsize=(14, 7))
|
fig = plt.figure(figsize=(14, 7))
|
||||||
# for i in range(1, 10):
|
for i in range(len(hyp)):
|
||||||
# plt.subplot(2, 5, i)
|
y = a[:, i + 5]
|
||||||
# plt.plot(x, a[:, i + 5], '.')
|
mu = (y * weights).sum() / weights.sum()
|
||||||
|
plt.subplot(2, 5, i+1)
|
||||||
|
plt.plot(x.max(), mu, 'o')
|
||||||
|
plt.plot(x, y, '.')
|
||||||
|
print(list(hyp.keys())[i],'%.4g' % mu)
|
||||||
|
|
|
@ -130,7 +130,7 @@ class LoadWebcam: # for inference
|
||||||
|
|
||||||
|
|
||||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, rect=False):
|
def __init__(self, path, img_size=416, batch_size=16, augment=False, rect=True):
|
||||||
with open(path, 'r') as f:
|
with open(path, 'r') as f:
|
||||||
img_files = f.read().splitlines()
|
img_files = f.read().splitlines()
|
||||||
self.img_files = list(filter(lambda x: len(x) > 0, img_files))
|
self.img_files = list(filter(lambda x: len(x) > 0, img_files))
|
||||||
|
@ -181,8 +181,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
self.batch = bi # batch index of image
|
self.batch = bi # batch index of image
|
||||||
|
|
||||||
# Preload images
|
# Preload images
|
||||||
# if n < 200: # preload all images into memory if possible
|
if n < 1001: # preload all images into memory if possible
|
||||||
# self.imgs = [cv2.imread(img_files[i]) for i in range(n)]
|
self.imgs = [cv2.imread(self.img_files[i]) for i in range(n)]
|
||||||
|
|
||||||
# Preload labels (required for weighted CE training)
|
# Preload labels (required for weighted CE training)
|
||||||
self.labels = [np.zeros((0, 5))] * n
|
self.labels = [np.zeros((0, 5))] * n
|
||||||
|
@ -201,11 +201,14 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
img_path = self.img_files[index]
|
img_path = self.img_files[index]
|
||||||
label_path = self.label_files[index]
|
label_path = self.label_files[index]
|
||||||
|
|
||||||
# if hasattr(self, 'imgs'): # preloaded
|
# Load image
|
||||||
# img = self.imgs[index] # BGR
|
if hasattr(self, 'imgs'): # preloaded
|
||||||
img = cv2.imread(img_path) # BGR
|
img = self.imgs[index]
|
||||||
|
else:
|
||||||
|
img = cv2.imread(img_path) # BGR
|
||||||
assert img is not None, 'File Not Found ' + img_path
|
assert img is not None, 'File Not Found ' + img_path
|
||||||
|
|
||||||
|
# Augment colorspace
|
||||||
augment_hsv = True
|
augment_hsv = True
|
||||||
if self.augment and augment_hsv:
|
if self.augment and augment_hsv:
|
||||||
# SV augmentation by 50%
|
# SV augmentation by 50%
|
||||||
|
|
|
@ -265,7 +265,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
# Compute losses
|
# Compute losses
|
||||||
h = model.hyp # hyperparameters
|
h = model.hyp # hyperparameters
|
||||||
bs = p[0].shape[0] # batch size
|
bs = p[0].shape[0] # batch size
|
||||||
k = h['k'] * bs # loss gain
|
k = bs # loss gain
|
||||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
||||||
|
|
Loading…
Reference in New Issue