updates
This commit is contained in:
parent
7b6cba86ef
commit
a834377122
|
@ -543,19 +543,20 @@ def select_best_evolve(path='evolve*.txt'): # from utils.utils import *; select
|
|||
print(file, x[fitness.argmax()])
|
||||
|
||||
|
||||
def kmeans_targets(path='./data/coco_64img.txt'): # from utils.utils import *; kmeans_targets()
|
||||
def kmeans_targets(path='./data/coco_64img.txt', n=9, img_size=320): # from utils.utils import *; kmeans_targets()
|
||||
# Produces a list of target kmeans suitable for use in *.cfg files
|
||||
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif']
|
||||
with open(path, 'r') as f:
|
||||
img_files = [x for x in f.read().splitlines() if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
|
||||
# Read shapes
|
||||
n = len(img_files)
|
||||
assert n > 0, 'No images found in %s' % path
|
||||
nf = len(img_files)
|
||||
assert nf > 0, 'No images found in %s' % path
|
||||
label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in img_files]
|
||||
s = np.array([Image.open(f).size for f in tqdm(img_files, desc='Reading image shapes')]) # (width, height)
|
||||
|
||||
# Read targets
|
||||
labels = [np.zeros((0, 5))] * n
|
||||
labels = [np.zeros((0, 5))] * nf
|
||||
iter = tqdm(label_files, desc='Reading labels')
|
||||
for i, file in enumerate(iter):
|
||||
try:
|
||||
|
@ -567,16 +568,16 @@ def kmeans_targets(path='./data/coco_64img.txt'): # from utils.utils import *;
|
|||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
||||
l[:, [1, 3]] *= s[i][0]
|
||||
l[:, [2, 4]] *= s[i][1]
|
||||
l[:, 1:] *= 320 / max(s[i])
|
||||
l[:, 1:] *= img_size / max(s[i]) # nominal img_size for training here
|
||||
labels[i] = l
|
||||
except:
|
||||
pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file
|
||||
assert len(np.concatenate(labels, 0)) > 0, 'No labels found. Incorrect label paths provided.'
|
||||
|
||||
# kmeans
|
||||
# kmeans calculation
|
||||
from scipy import cluster
|
||||
wh = np.concatenate(labels, 0)[:, 3:5]
|
||||
k = cluster.vq.kmeans(wh, 9)[0]
|
||||
k = cluster.vq.kmeans(wh, n)[0]
|
||||
k = k[np.argsort(k.prod(1))]
|
||||
for x in k.ravel():
|
||||
print('%.1f, ' % x, end='')
|
||||
|
|
Loading…
Reference in New Issue