updates
This commit is contained in:
parent
100f443722
commit
a70c9f87a9
|
@ -251,26 +251,26 @@ def compute_loss(p, targets): # predictions, targets
|
||||||
BCE = nn.BCEWithLogitsLoss()
|
BCE = nn.BCEWithLogitsLoss()
|
||||||
|
|
||||||
# Compute losses
|
# Compute losses
|
||||||
# bs = p[0].shape[0] # batch size
|
bs = p[0].shape[0] # batch size
|
||||||
# gp = [x.numel() for x in tconf] # grid points
|
# gp = [x.numel() for x in tconf] # grid points
|
||||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||||
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
|
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
|
||||||
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
tconf = torch.zeros_like(pi0[..., 0]) # conf
|
||||||
|
|
||||||
# Compute losses
|
# Compute losses
|
||||||
k = 135.8
|
k = 8.4875 * bs
|
||||||
if len(b): # number of targets
|
if len(b): # number of targets
|
||||||
pi = pi0[b, a, gj, gi] # predictions closest to anchors
|
pi = pi0[b, a, gj, gi] # predictions closest to anchors
|
||||||
tconf[b, a, gj, gi] = 1 # conf
|
tconf[b, a, gj, gi] = 1 # conf
|
||||||
|
|
||||||
lxy += (k * 0.07997) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
|
lxy += (k * 0.079756) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
|
||||||
lwh += (k * 0.007867) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
lwh += (k * 0.010461) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
||||||
# lwh += (k * 0.007867) * MSE(torch.sigmoid(pi[..., 2:4]), twh[i]) # wh power loss
|
# lwh += (k * 0.010461) * MSE(torch.sigmoid(pi[..., 2:4]), twh[i]) # wh power loss
|
||||||
lcls += (k * 0.02111) * CE(pi[..., 5:], tcls[i]) # class_conf loss
|
lcls += (k * 0.02105) * CE(pi[..., 5:], tcls[i]) # class_conf loss
|
||||||
|
|
||||||
# pos_weight = ft([gp[i] / min(gp) * 4.])
|
# pos_weight = ft([gp[i] / min(gp) * 4.])
|
||||||
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
||||||
lconf += (k * 0.8911) * BCE(pi0[..., 4], tconf) # obj_conf loss
|
lconf += (k * 0.88873) * BCE(pi0[..., 4], tconf) # obj_conf loss
|
||||||
loss = lxy + lwh + lconf + lcls
|
loss = lxy + lwh + lconf + lcls
|
||||||
|
|
||||||
return loss, torch.cat((lxy, lwh, lconf, lcls, loss)).detach()
|
return loss, torch.cat((lxy, lwh, lconf, lcls, loss)).detach()
|
||||||
|
|
Loading…
Reference in New Issue