updates
This commit is contained in:
parent
af9864de7b
commit
a284fc921d
|
@ -133,7 +133,7 @@ def detect(opt):
|
|||
# Add the bbox to the plot
|
||||
label = '%s %.2f' % (classes[int(cls_pred)], conf)
|
||||
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
|
||||
plot_one_box([x1, y1, x2, y2], img, label=label, color=color, line_thickness=3)
|
||||
plot_one_box([x1, y1, x2, y2], img, label=label, color=color)
|
||||
|
||||
if opt.plot_flag:
|
||||
# Save generated image with detections
|
||||
|
|
5
test.py
5
test.py
|
@ -8,7 +8,7 @@ parser = argparse.ArgumentParser()
|
|||
parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch')
|
||||
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
||||
parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.weights', help='path to weights file')
|
||||
parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file')
|
||||
parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
||||
parser.add_argument('-conf_thres', type=float, default=0.5, help='object confidence threshold')
|
||||
|
@ -63,6 +63,9 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
|
|||
output = model(imgs)
|
||||
output = non_max_suppression(output, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres)
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
# plt.imshow(imgs[1][0])
|
||||
|
||||
# Compute average precision for each sample
|
||||
for sample_i in range(len(targets)):
|
||||
correct = []
|
||||
|
|
|
@ -89,8 +89,7 @@ class load_images_and_labels(): # for training
|
|||
|
||||
def __iter__(self):
|
||||
self.count = -1
|
||||
self.shuffled_vector = np.random.permutation(self.nF) # shuffled vector
|
||||
# self.shuffled_vector = np.arange(self.nF) # not shuffled
|
||||
self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
|
|
|
@ -40,7 +40,7 @@ def xview_class_weights(indices): # weights of each class in the training set,
|
|||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
|
||||
tl = line_thickness or round(0.003 * max(img.shape[0:2])) # line thickness
|
||||
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||
cv2.rectangle(img, c1, c2, color, thickness=tl)
|
||||
|
|
Loading…
Reference in New Issue