updates
This commit is contained in:
parent
742908257a
commit
9f145d2aa7
12
test.py
12
test.py
|
@ -20,9 +20,9 @@ def test(
|
|||
device = torch_utils.select_device()
|
||||
|
||||
# Configure run
|
||||
data_cfg = parse_data_cfg(data_cfg)
|
||||
nC = int(data_cfg['classes']) # number of classes (80 for COCO)
|
||||
test_path = data_cfg['valid']
|
||||
data_cfg_dict = parse_data_cfg(data_cfg)
|
||||
nC = int(data_cfg_dict['classes']) # number of classes (80 for COCO)
|
||||
test_path = data_cfg_dict['valid']
|
||||
|
||||
# Initialize model
|
||||
model = Darknet(cfg, img_size)
|
||||
|
@ -111,7 +111,7 @@ def test(
|
|||
# Print mAP per class
|
||||
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
|
||||
|
||||
classes = load_classes(data_cfg['names']) # Extracts class labels from file
|
||||
classes = load_classes(data_cfg_dict['names']) # Extracts class labels from file
|
||||
for i, c in enumerate(classes):
|
||||
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
|
||||
|
||||
|
@ -122,8 +122,8 @@ def test(
|
|||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(prog='test.py')
|
||||
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
|
||||
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
||||
|
|
5
train.py
5
train.py
|
@ -35,8 +35,7 @@ def train(
|
|||
best = os.path.join(weights, 'best.pt')
|
||||
|
||||
# Configure run
|
||||
data_cfg = parse_data_cfg(data_cfg)
|
||||
train_path = data_cfg['train']
|
||||
train_path = parse_data_cfg(data_cfg)['train']
|
||||
|
||||
# Initialize model
|
||||
model = Darknet(cfg, img_size)
|
||||
|
@ -187,8 +186,8 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
||||
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
||||
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
|
||||
parser.add_argument('--weights', type=str, default='weights', help='path to store weights')
|
||||
|
|
Loading…
Reference in New Issue