updates
This commit is contained in:
parent
cf5bbc97ee
commit
9b6347ac6c
13
train.py
13
train.py
|
@ -18,7 +18,7 @@ hyp = {'k': 8.4875, # loss multiple
|
||||||
'conf': 0.88873, # conf loss fraction
|
'conf': 0.88873, # conf loss fraction
|
||||||
'iou_t': 0.10, # iou target-anchor training threshold
|
'iou_t': 0.10, # iou target-anchor training threshold
|
||||||
'lr0': 0.001, # initial learning rate
|
'lr0': 0.001, # initial learning rate
|
||||||
'lrf': -4, # final learning rate = lr0 * (10 ** lrf)
|
'lrf': -5, # final learning rate = lr0 * (10 ** lrf)
|
||||||
'momentum': 0.9, # SGD momentum
|
'momentum': 0.9, # SGD momentum
|
||||||
'weight_decay': 0.0005, # optimizer weight decay
|
'weight_decay': 0.0005, # optimizer weight decay
|
||||||
}
|
}
|
||||||
|
@ -88,11 +88,14 @@ def train(
|
||||||
# Scheduler (reduce lr at epochs 218, 245, i.e. batches 400k, 450k)
|
# Scheduler (reduce lr at epochs 218, 245, i.e. batches 400k, 450k)
|
||||||
# lf = lambda x: 1 - x / epochs # linear ramp to zero
|
# lf = lambda x: 1 - x / epochs # linear ramp to zero
|
||||||
# lf = lambda x: 10 ** (-2 * x / epochs) # exp ramp to lr0 * 1e-2
|
# lf = lambda x: 10 ** (-2 * x / epochs) # exp ramp to lr0 * 1e-2
|
||||||
lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inv exp ramp to lr0 * 1e-2
|
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inv exp ramp to lr0 * 1e-2
|
||||||
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf, last_epoch=start_epoch - 1)
|
# scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf, last_epoch=start_epoch - 1)
|
||||||
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[218, 245], gamma=0.1, last_epoch=start_epoch - 1)
|
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
|
||||||
|
milestones=[218, 245],
|
||||||
|
gamma=0.1,
|
||||||
|
last_epoch=start_epoch - 1)
|
||||||
|
|
||||||
# # Plot lr schedule
|
# Plot lr schedule
|
||||||
# y = []
|
# y = []
|
||||||
# for _ in range(epochs):
|
# for _ in range(epochs):
|
||||||
# scheduler.step()
|
# scheduler.step()
|
||||||
|
|
|
@ -142,8 +142,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
x.replace('images', 'labels').replace('.bmp', '.txt').replace('.jpg', '.txt').replace('.png', '.txt')
|
x.replace('images', 'labels').replace('.bmp', '.txt').replace('.jpg', '.txt').replace('.png', '.txt')
|
||||||
for x in self.img_files]
|
for x in self.img_files]
|
||||||
|
|
||||||
if n < 200: # preload all images into memory if possible
|
# if n < 200: # preload all images into memory if possible
|
||||||
self.imgs = [cv2.imread(img_files[i]) for i in range(n)]
|
# self.imgs = [cv2.imread(img_files[i]) for i in range(n)]
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.img_files)
|
return len(self.img_files)
|
||||||
|
@ -152,10 +152,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
img_path = self.img_files[index]
|
img_path = self.img_files[index]
|
||||||
label_path = self.label_files[index]
|
label_path = self.label_files[index]
|
||||||
|
|
||||||
if hasattr(self, 'imgs'):
|
# if hasattr(self, 'imgs'):
|
||||||
img = self.imgs[index] # BGR
|
# img = self.imgs[index] # BGR
|
||||||
else:
|
img = cv2.imread(img_path) # BGR
|
||||||
img = cv2.imread(img_path) # BGR
|
|
||||||
assert img is not None, 'File Not Found ' + img_path
|
assert img is not None, 'File Not Found ' + img_path
|
||||||
|
|
||||||
augment_hsv = True
|
augment_hsv = True
|
||||||
|
|
Loading…
Reference in New Issue