diff --git a/utils/datasets.py b/utils/datasets.py index 5382d165..fe783651 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -352,7 +352,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing if extract_bounding_boxes: p = Path(self.img_files[i]) img = cv2.imread(str(p)) - h, w, _ = img.shape + h, w = img.shape[:2] for j, x in enumerate(l): f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name) if not os.path.exists(Path(f).parent): @@ -380,7 +380,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing assert img is not None, 'Image Not Found ' + img_path r = self.img_size / max(img.shape) # size ratio if self.augment and r < 1: # if training (NOT testing), downsize to inference shape - h, w, _ = img.shape + h, w = img.shape[:2] img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_LINEAR) # or INTER_AREA self.imgs[i] = img @@ -414,14 +414,14 @@ class LoadImagesAndLabels(Dataset): # for training/testing if mosaic: # Load mosaic img, labels = load_mosaic(self, index) - h, w, _ = img.shape + h, w = img.shape[:2] else: # Load image img = load_image(self, index) # Letterbox - h, w, _ = img.shape + h, w = img.shape[:2] if self.rect: img, ratio, padw, padh = letterbox(img, self.batch_shapes[self.batch[index]], mode='rect') else: @@ -512,7 +512,7 @@ def load_image(self, index): assert img is not None, 'Image Not Found ' + img_path r = self.img_size / max(img.shape) # size ratio if self.augment: # if training (NOT testing), downsize to inference shape - h, w, _ = img.shape + h, w = img.shape[:2] img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_LINEAR) # _LINEAR fastest return img @@ -762,14 +762,28 @@ def cutout(image, labels): return labels +def reduce_img_size(path='../data/sm3/images', img_size=1024): # from utils.datasets import *; reduce_img_size() + # creates a new ./images_reduced folder with reduced size images of maximum size img_size + path_new = path + '_reduced' # reduced images path + create_folder(path_new) + for f in tqdm(glob.glob('%s/*.*' % path)): + try: + img = cv2.imread(f) + h, w = img.shape[:2] + r = img_size / max(h, w) # size ratio + if r < 1.0: + img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest + cv2.imwrite(f.replace(path, path_new), img) + except: + print('WARNING: image failure %s' % f) + + def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') - if os.path.exists(output): - shutil.rmtree(output) # delete output folder - os.makedirs(output) # make new output folder + create_folder(output) for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')