updates
This commit is contained in:
parent
b1604be04c
commit
94f954eba0
|
@ -75,6 +75,7 @@ def detect(
|
||||||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
# Print results to screen
|
# Print results to screen
|
||||||
|
print('%gx%g ' % img.shape[2:], end='') # print image size
|
||||||
for c in det[:, -1].unique():
|
for c in det[:, -1].unique():
|
||||||
n = (det[:, -1] == c).sum()
|
n = (det[:, -1] == c).sum()
|
||||||
print('%g %ss' % (n, classes[int(c)]), end=', ')
|
print('%g %ss' % (n, classes[int(c)]), end=', ')
|
||||||
|
|
|
@ -75,7 +75,6 @@ class LoadImages: # for inference
|
||||||
|
|
||||||
# Padded resize
|
# Padded resize
|
||||||
img, _, _, _ = letterbox(img0, new_shape=self.height)
|
img, _, _, _ = letterbox(img0, new_shape=self.height)
|
||||||
print('%gx%g ' % img.shape[:2], end='') # print image size
|
|
||||||
|
|
||||||
# Normalize RGB
|
# Normalize RGB
|
||||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
|
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
|
||||||
|
@ -114,6 +113,7 @@ class LoadWebcam: # for inference
|
||||||
assert ret_val, 'Webcam Error'
|
assert ret_val, 'Webcam Error'
|
||||||
img_path = 'webcam_%g.jpg' % self.count
|
img_path = 'webcam_%g.jpg' % self.count
|
||||||
img0 = cv2.flip(img0, 1) # flip left-right
|
img0 = cv2.flip(img0, 1) # flip left-right
|
||||||
|
print('webcam %g: ' % self.count, end='')
|
||||||
|
|
||||||
# Padded resize
|
# Padded resize
|
||||||
img, _, _, _ = letterbox(img0, new_shape=self.height)
|
img, _, _, _ = letterbox(img0, new_shape=self.height)
|
||||||
|
@ -144,7 +144,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
for x in self.img_files]
|
for x in self.img_files]
|
||||||
|
|
||||||
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
||||||
self.train_rectangular = False
|
self.train_rectangular = True
|
||||||
if self.train_rectangular:
|
if self.train_rectangular:
|
||||||
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
||||||
nb = bi[-1] + 1 # number of batches
|
nb = bi[-1] + 1 # number of batches
|
||||||
|
|
Loading…
Reference in New Issue