updates
This commit is contained in:
parent
f541861533
commit
90a20f93e5
|
@ -1,8 +1,8 @@
|
|||
person
|
||||
bicycle
|
||||
car
|
||||
motorbike
|
||||
aeroplane
|
||||
motorcycle
|
||||
airplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
|
@ -55,12 +55,12 @@ pizza
|
|||
donut
|
||||
cake
|
||||
chair
|
||||
sofa
|
||||
pottedplant
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
diningtable
|
||||
dining table
|
||||
toilet
|
||||
tvmonitor
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
|
|
|
@ -72,7 +72,7 @@ def detect(
|
|||
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
|
||||
|
||||
# Rescale boxes from 416 to true image size
|
||||
detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape)
|
||||
scale_coords(img_size, detections[:, :4], im0.shape).round()
|
||||
|
||||
# Print results to screen
|
||||
unique_classes = detections[:, -1].cpu().unique()
|
||||
|
|
51
test.py
51
test.py
|
@ -1,4 +1,6 @@
|
|||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from models import *
|
||||
from utils.datasets import *
|
||||
|
@ -13,7 +15,8 @@ def test(
|
|||
img_size=416,
|
||||
iou_thres=0.5,
|
||||
conf_thres=0.3,
|
||||
nms_thres=0.45
|
||||
nms_thres=0.45,
|
||||
save_json=False
|
||||
):
|
||||
device = torch_utils.select_device()
|
||||
|
||||
|
@ -37,16 +40,21 @@ def test(
|
|||
# dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size) # pytorch
|
||||
dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size)
|
||||
|
||||
# Create JSON
|
||||
jdict = []
|
||||
float3 = lambda x: float(format(x, '.3f')) # print json to 3 decimals
|
||||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
||||
|
||||
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
|
||||
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
|
||||
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], []
|
||||
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
|
||||
for batch_i, (imgs, targets) in enumerate(dataloader):
|
||||
for batch_i, (imgs, targets, paths, shapes) in enumerate(dataloader):
|
||||
output = model(imgs.to(device))
|
||||
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
|
||||
|
||||
# Compute average precision for each sample
|
||||
for sample_i, (labels, detections) in enumerate(zip(targets, output)):
|
||||
for si, (labels, detections) in enumerate(zip(targets, output)):
|
||||
seen += 1
|
||||
|
||||
if detections is None:
|
||||
|
@ -59,6 +67,22 @@ def test(
|
|||
detections = detections.cpu().numpy()
|
||||
detections = detections[np.argsort(-detections[:, 4])]
|
||||
|
||||
# Save JSON
|
||||
if save_json:
|
||||
# rescale box to original image size, top left origin
|
||||
sbox = torch.from_numpy(detections[:, :4]).clone() # x1y1x2y2
|
||||
scale_coords(img_size, sbox, shapes[si])
|
||||
sbox = xyxy2xywh(sbox)
|
||||
sbox[:, :2] -= sbox[:, 2:] / 2 # origin from center to corner
|
||||
|
||||
for di, d in enumerate(detections):
|
||||
jdict.append({ # add to json dictionary
|
||||
'image_id': int(Path(paths[si]).stem.split('_')[-1]),
|
||||
'category_id': darknet2coco_class(int(d[6])),
|
||||
'bbox': [float3(x) for x in sbox[di]],
|
||||
'score': float3(d[4] * d[5])
|
||||
})
|
||||
|
||||
# If no labels add number of detections as incorrect
|
||||
correct = []
|
||||
if labels.size(0) == 0:
|
||||
|
@ -116,6 +140,27 @@ def test(
|
|||
for i, c in enumerate(classes):
|
||||
print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i] + 1E-16)))
|
||||
|
||||
# Save JSON
|
||||
if save_json:
|
||||
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.img_files]
|
||||
with open('results.json', 'w') as file:
|
||||
json.dump(jdict, file)
|
||||
|
||||
from utils.pycocotools.coco import COCO
|
||||
from utils.pycocotools.cocoeval import COCOeval
|
||||
|
||||
# initialize COCO ground truth api
|
||||
cocoGt = COCO('../coco/annotations/instances_val2014.json')
|
||||
|
||||
# initialize COCO detections api
|
||||
cocoDt = cocoGt.loadRes('results.json')
|
||||
|
||||
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
||||
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
|
||||
cocoEval.evaluate()
|
||||
cocoEval.accumulate()
|
||||
cocoEval.summarize()
|
||||
|
||||
# Return mAP
|
||||
return mean_mAP, mean_R, mean_P
|
||||
|
||||
|
|
2
train.py
2
train.py
|
@ -113,7 +113,7 @@ def train(
|
|||
ui = -1
|
||||
rloss = defaultdict(float) # running loss
|
||||
optimizer.zero_grad()
|
||||
for i, (imgs, targets) in enumerate(dataloader):
|
||||
for i, (imgs, targets, _, _) in enumerate(dataloader):
|
||||
if sum([len(x) for x in targets]) < 1: # if no targets continue
|
||||
continue
|
||||
|
||||
|
|
|
@ -128,8 +128,7 @@ class LoadImagesAndLabels: # for training
|
|||
# Fixed-Scale YOLO Training
|
||||
height = self.height
|
||||
|
||||
img_all = []
|
||||
labels_all = []
|
||||
img_all, labels_all, img_paths, img_shapes = [], [], [], []
|
||||
for index, files_index in enumerate(range(ia, ib)):
|
||||
img_path = self.img_files[self.shuffled_vector[files_index]]
|
||||
label_path = self.label_files[self.shuffled_vector[files_index]]
|
||||
|
@ -210,13 +209,15 @@ class LoadImagesAndLabels: # for training
|
|||
|
||||
img_all.append(img)
|
||||
labels_all.append(torch.from_numpy(labels))
|
||||
img_paths.append(img_path)
|
||||
img_shapes.append((h, w))
|
||||
|
||||
# Normalize
|
||||
img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch
|
||||
img_all = np.ascontiguousarray(img_all, dtype=np.float32)
|
||||
img_all /= 255.0
|
||||
|
||||
return torch.from_numpy(img_all), labels_all
|
||||
return torch.from_numpy(img_all), labels_all, img_paths, img_shapes
|
||||
|
||||
def __len__(self):
|
||||
return self.nB # number of batches
|
||||
|
|
|
@ -20,5 +20,5 @@ def select_device(force_cpu=False):
|
|||
torch.cuda.set_device(0) # OPTIONAL: Set your GPU if multiple available
|
||||
# print('Using ', torch.cuda.device_count(), ' GPUs')
|
||||
|
||||
print('Using %s %s\n' % (device.type, torch.cuda.get_device_properties(0) if cuda else ''))
|
||||
print('Using %s %s\n' % (device.type, torch.cuda.get_device_properties(0) if cuda else ''))
|
||||
return device
|
||||
|
|
|
@ -49,6 +49,14 @@ def coco_class_weights(): # frequency of each class in coco train2014
|
|||
return weights
|
||||
|
||||
|
||||
def darknet2coco_class(c): # returns the coco class for each darknet class
|
||||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||
x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||
return x[c]
|
||||
|
||||
|
||||
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
|
||||
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
|
||||
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||
|
@ -99,7 +107,7 @@ def scale_coords(img_size, coords, img0_shape):
|
|||
coords[:, [0, 2]] -= pad_x
|
||||
coords[:, [1, 3]] -= pad_y
|
||||
coords[:, :4] /= gain
|
||||
coords[:, :4] = torch.round(torch.clamp(coords[:, :4], min=0))
|
||||
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
|
||||
return coords
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue