This commit is contained in:
Glenn Jocher 2019-02-26 02:53:11 +01:00
parent f541861533
commit 90a20f93e5
7 changed files with 70 additions and 16 deletions

View File

@ -1,8 +1,8 @@
person
bicycle
car
motorbike
aeroplane
motorcycle
airplane
bus
train
truck
@ -55,12 +55,12 @@ pizza
donut
cake
chair
sofa
pottedplant
couch
potted plant
bed
diningtable
dining table
toilet
tvmonitor
tv
laptop
mouse
remote

View File

@ -72,7 +72,7 @@ def detect(
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
# Rescale boxes from 416 to true image size
detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape)
scale_coords(img_size, detections[:, :4], im0.shape).round()
# Print results to screen
unique_classes = detections[:, -1].cpu().unique()

51
test.py
View File

@ -1,4 +1,6 @@
import argparse
import json
from pathlib import Path
from models import *
from utils.datasets import *
@ -13,7 +15,8 @@ def test(
img_size=416,
iou_thres=0.5,
conf_thres=0.3,
nms_thres=0.45
nms_thres=0.45,
save_json=False
):
device = torch_utils.select_device()
@ -37,16 +40,21 @@ def test(
# dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size) # pytorch
dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size)
# Create JSON
jdict = []
float3 = lambda x: float(format(x, '.3f')) # print json to 3 decimals
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], []
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
for batch_i, (imgs, targets) in enumerate(dataloader):
for batch_i, (imgs, targets, paths, shapes) in enumerate(dataloader):
output = model(imgs.to(device))
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
# Compute average precision for each sample
for sample_i, (labels, detections) in enumerate(zip(targets, output)):
for si, (labels, detections) in enumerate(zip(targets, output)):
seen += 1
if detections is None:
@ -59,6 +67,22 @@ def test(
detections = detections.cpu().numpy()
detections = detections[np.argsort(-detections[:, 4])]
# Save JSON
if save_json:
# rescale box to original image size, top left origin
sbox = torch.from_numpy(detections[:, :4]).clone() # x1y1x2y2
scale_coords(img_size, sbox, shapes[si])
sbox = xyxy2xywh(sbox)
sbox[:, :2] -= sbox[:, 2:] / 2 # origin from center to corner
for di, d in enumerate(detections):
jdict.append({ # add to json dictionary
'image_id': int(Path(paths[si]).stem.split('_')[-1]),
'category_id': darknet2coco_class(int(d[6])),
'bbox': [float3(x) for x in sbox[di]],
'score': float3(d[4] * d[5])
})
# If no labels add number of detections as incorrect
correct = []
if labels.size(0) == 0:
@ -116,6 +140,27 @@ def test(
for i, c in enumerate(classes):
print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i] + 1E-16)))
# Save JSON
if save_json:
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
from utils.pycocotools.coco import COCO
from utils.pycocotools.cocoeval import COCOeval
# initialize COCO ground truth api
cocoGt = COCO('../coco/annotations/instances_val2014.json')
# initialize COCO detections api
cocoDt = cocoGt.loadRes('results.json')
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# Return mAP
return mean_mAP, mean_R, mean_P

View File

@ -113,7 +113,7 @@ def train(
ui = -1
rloss = defaultdict(float) # running loss
optimizer.zero_grad()
for i, (imgs, targets) in enumerate(dataloader):
for i, (imgs, targets, _, _) in enumerate(dataloader):
if sum([len(x) for x in targets]) < 1: # if no targets continue
continue

View File

@ -128,8 +128,7 @@ class LoadImagesAndLabels: # for training
# Fixed-Scale YOLO Training
height = self.height
img_all = []
labels_all = []
img_all, labels_all, img_paths, img_shapes = [], [], [], []
for index, files_index in enumerate(range(ia, ib)):
img_path = self.img_files[self.shuffled_vector[files_index]]
label_path = self.label_files[self.shuffled_vector[files_index]]
@ -210,13 +209,15 @@ class LoadImagesAndLabels: # for training
img_all.append(img)
labels_all.append(torch.from_numpy(labels))
img_paths.append(img_path)
img_shapes.append((h, w))
# Normalize
img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch
img_all = np.ascontiguousarray(img_all, dtype=np.float32)
img_all /= 255.0
return torch.from_numpy(img_all), labels_all
return torch.from_numpy(img_all), labels_all, img_paths, img_shapes
def __len__(self):
return self.nB # number of batches

View File

@ -49,6 +49,14 @@ def coco_class_weights(): # frequency of each class in coco train2014
return weights
def darknet2coco_class(c): # returns the coco class for each darknet class
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
return x[c]
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
@ -99,7 +107,7 @@ def scale_coords(img_size, coords, img0_shape):
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, :4] /= gain
coords[:, :4] = torch.round(torch.clamp(coords[:, :4], min=0))
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
return coords