From 8ed89d8c88e1ec68a11f789751c3e11114feba19 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sun, 2 Sep 2018 11:15:39 +0200 Subject: [PATCH] updates --- detect.py | 12 +++--------- utils/utils.py | 40 +++++++++++++++++++++++----------------- 2 files changed, 26 insertions(+), 26 deletions(-) diff --git a/detect.py b/detect.py index 34b9f90d..75db10bd 100755 --- a/detect.py +++ b/detect.py @@ -61,25 +61,19 @@ def detect(opt): imgs = [] # Stores image paths img_detections = [] # Stores detections for each image index prev_time = time.time() - detections = None for batch_i, (img_paths, img) in enumerate(dataloader): print(batch_i, img.shape, end=' ') - preds = [] # Get detections with torch.no_grad(): - # Normal orientation chip = torch.from_numpy(img).unsqueeze(0).to(device) pred = model(chip) pred = pred[pred[:, :, 4] > opt.conf_thres] if len(pred) > 0: - preds.append(pred.unsqueeze(0)) - - if len(preds) > 0: - detections = non_max_suppression(torch.cat(preds, 1), opt.conf_thres, opt.nms_thres) - img_detections.extend(detections) - imgs.extend(img_paths) + detections = non_max_suppression(pred.unsqueeze(0), opt.conf_thres, opt.nms_thres) + img_detections.extend(detections) + imgs.extend(img_paths) print('Batch %d... (Done %.3fs)' % (batch_i, time.time() - prev_time)) prev_time = time.time() diff --git a/utils/utils.py b/utils/utils.py index 38952865..54b49df3 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -5,7 +5,7 @@ import numpy as np import torch import torch.nn.functional as F -# set printoptions +# Set printoptions torch.set_printoptions(linewidth=1320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{11.5g}'.format}) # format short g, %precision=5 @@ -19,7 +19,7 @@ def load_classes(path): return names -def modelinfo(model): +def modelinfo(model): # Plots a line-by-line description of a PyTorch model nparams = sum(x.numel() for x in model.parameters()) ngradients = sum(x.numel() for x in model.parameters() if x.requires_grad) print('\n%4s %70s %9s %12s %20s %12s %12s' % ('', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) @@ -39,17 +39,17 @@ def xview_class_weights(indices): # weights of each class in the training set, return weights[indices] -def plot_one_box(x, im, color=None, label=None, line_thickness=None): - tl = line_thickness or round(0.003 * max(im.shape[0:2])) # line thickness +def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img + tl = line_thickness or round(0.003 * max(img.shape[0:2])) # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) - cv2.rectangle(im, c1, c2, color, thickness=tl) + cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 - cv2.rectangle(im, c1, c2, color, -1) # filled - cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) + cv2.rectangle(img, c1, c2, color, -1) # filled + cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def weights_init_normal(m): @@ -61,13 +61,22 @@ def weights_init_normal(m): torch.nn.init.constant_(m.bias.data, 0.0) -def xyxy2xywh(box): - xywh = np.zeros(box.shape) - xywh[:, 0] = (box[:, 0] + box[:, 2]) / 2 - xywh[:, 1] = (box[:, 1] + box[:, 3]) / 2 - xywh[:, 2] = box[:, 2] - box[:, 0] - xywh[:, 3] = box[:, 3] - box[:, 1] - return xywh +def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] + y = np.zeros(x.shape) + y[:, 0] = (x[:, 0] + x[:, 2]) / 2 + y[:, 1] = (x[:, 1] + x[:, 3]) / 2 + y[:, 2] = x[:, 2] - x[:, 0] + y[:, 3] = x[:, 3] - x[:, 1] + return y + + +def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] + y = np.zeros(x.shape) + y[:, 0] = (x[:, 1] - x[:, 3] / 2) + y[:, 1] = (x[:, 2] - x[:, 4] / 2) + y[:, 2] = (x[:, 1] + x[:, 3] / 2) + y[:, 3] = (x[:, 2] + x[:, 4] / 2) + return y def compute_ap(recall, precision): @@ -98,9 +107,6 @@ def compute_ap(recall, precision): def bbox_iou(box1, box2, x1y1x2y2=True): - # if len(box1.shape) == 1: - # box1 = box1.reshape(1, 4) - """ Returns the IoU of two bounding boxes """