updates
This commit is contained in:
		
							parent
							
								
									df4f25e610
								
							
						
					
					
						commit
						8df3601663
					
				
							
								
								
									
										38
									
								
								train.py
								
								
								
								
							
							
						
						
									
										38
									
								
								train.py
								
								
								
								
							|  | @ -320,27 +320,7 @@ def train(cfg, | |||
|     return results | ||||
| 
 | ||||
| 
 | ||||
| def print_mutation(hyp, results): | ||||
|     # Write mutation results | ||||
|     a = '%11s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys | ||||
|     b = '%11.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values | ||||
|     c = '%11.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss) | ||||
|     print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) | ||||
| 
 | ||||
|     if opt.bucket: | ||||
|         os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt | ||||
|         with open('evolve.txt', 'a') as f:  # append result | ||||
|             f.write(c + b + '\n') | ||||
|         x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows | ||||
|         np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%11.3g')  # save sort by fitness | ||||
|         os.system('gsutil cp evolve.txt gs://%s' % opt.bucket)  # upload evolve.txt | ||||
|     else: | ||||
|         with open('evolve.txt', 'a') as f: | ||||
|             f.write(c + b + '\n') | ||||
| 
 | ||||
| 
 | ||||
| def fitness(x):  # returns fitness of hyp evolution vectors | ||||
|     return 0.5 * x[:, 2] + 0.5 * x[:, 3]  # fitness = 0.5 * mAP + 0.5 * F1 | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|  | @ -409,19 +389,7 @@ if __name__ == '__main__': | |||
|                             accumulate=opt.accumulate) | ||||
| 
 | ||||
|             # Write mutation results | ||||
|             print_mutation(hyp, results) | ||||
|             print_mutation(hyp, results, opt.bucket) | ||||
| 
 | ||||
|             # # Plot results | ||||
|             # import numpy as np | ||||
|             # import matplotlib.pyplot as plt | ||||
|             # a = np.loadtxt('evolve.txt') | ||||
|             # x = fitness(a) | ||||
|             # weights = (x - x.min()) ** 2 | ||||
|             # fig = plt.figure(figsize=(10, 10)) | ||||
|             # for i in range(len(hyp)): | ||||
|             #     y = a[:, i + 5] | ||||
|             #     mu = (y * weights).sum() / weights.sum() | ||||
|             #     plt.subplot(4, 5, i + 1) | ||||
|             #     plt.plot(x.max(), mu, 'o') | ||||
|             #     plt.plot(x, y, '.') | ||||
|             #     print(list(hyp.keys())[i], '%.4g' % mu) | ||||
|             # Plot results | ||||
|             plot_evolution_results(hyp) | ||||
|  |  | |||
|  | @ -583,6 +583,30 @@ def kmeans_targets(path='./data/coco_64img.txt', n=9, img_size=320):  # from uti | |||
|         print('%.1f, ' % x, end='')  # drop-in replacement for *.cfg anchors | ||||
| 
 | ||||
| 
 | ||||
| def print_mutation(hyp, results, bucket=''): | ||||
|     # Print mutation results to evolve.txt (for use with train.py --evolve) | ||||
|     a = '%11s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys | ||||
|     b = '%11.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values | ||||
|     c = '%11.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss) | ||||
|     print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) | ||||
| 
 | ||||
|     if bucket: | ||||
|         os.system('gsutil cp gs://%s/evolve.txt .' % bucket)  # download evolve.txt | ||||
|         with open('evolve.txt', 'a') as f:  # append result | ||||
|             f.write(c + b + '\n') | ||||
|         x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows | ||||
|         np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%11.3g')  # save sort by fitness | ||||
|         os.system('gsutil cp evolve.txt gs://%s' % bucket)  # upload evolve.txt | ||||
|     else: | ||||
|         with open('evolve.txt', 'a') as f: | ||||
|             f.write(c + b + '\n') | ||||
| 
 | ||||
| 
 | ||||
| def fitness(x): | ||||
|     # Returns fitness (for use with results.txt or evolve.txt) | ||||
|     return 0.5 * x[:, 2] + 0.5 * x[:, 3]  # fitness = 0.5 * mAP + 0.5 * F1 | ||||
| 
 | ||||
| 
 | ||||
| # Plotting functions --------------------------------------------------------------------------------------------------- | ||||
| def plot_one_box(x, img, color=None, label=None, line_thickness=None): | ||||
|     # Plots one bounding box on image img | ||||
|  | @ -679,6 +703,26 @@ def plot_targets_txt():  # from utils.utils import *; plot_targets_txt() | |||
|     plt.savefig('targets.jpg', dpi=200) | ||||
| 
 | ||||
| 
 | ||||
| def plot_evolution_results(hyp):  # from utils.utils import *; plot_evolution_results() | ||||
|     # Plot hyperparameter evolution results in evolve.txt | ||||
|     x = np.loadtxt('evolve.txt') | ||||
|     f = fitness(x) | ||||
|     weights = (f - f.min()) ** 2  # for weighted results | ||||
|     fig = plt.figure(figsize=(12, 10)) | ||||
|     matplotlib.rc('font', **{'size': 8}) | ||||
|     for i, (k, v) in enumerate(hyp.items()): | ||||
|         y = x[:, i + 5] | ||||
|         # mu = (y * weights).sum() / weights.sum()  # best weighted result | ||||
|         mu = y[f.argmax()]  # best single result | ||||
|         plt.subplot(4, 5, i + 1) | ||||
|         plt.plot(mu, f.max(), 'o', markersize=10) | ||||
|         plt.plot(y, f, '.') | ||||
|         plt.title('%s = %g' % (k, v), fontdict={'size': 8})  # limit to 40 characters | ||||
|         print(list(hyp.keys())[i], '%.4g' % mu) | ||||
|     fig.tight_layout() | ||||
|     plt.savefig('evolve.png', dpi=200) | ||||
| 
 | ||||
| 
 | ||||
| def plot_results(start=0, stop=0):  # from utils.utils import *; plot_results() | ||||
|     # Plot training results files 'results*.txt' | ||||
|     # import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt') | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue