This commit is contained in:
Glenn Jocher 2019-02-18 16:25:57 +01:00
parent c535a8699a
commit 8de043980a
1 changed files with 20 additions and 22 deletions

View File

@ -6,7 +6,7 @@ import torch.nn as nn
from utils.parse_config import * from utils.parse_config import *
from utils.utils import * from utils.utils import *
ONNX_EXPORT = False ONNX_EXPORT = True
def create_modules(module_defs): def create_modules(module_defs):
@ -212,26 +212,24 @@ class YOLOLayer(nn.Module):
else: else:
if ONNX_EXPORT: if ONNX_EXPORT:
p = p.view(-1, 85) # p = p.view(-1, 85)
xy = torch.sigmoid(p[:, 0:2]) + self.grid_xy[0] # x, y # xy = torch.sigmoid(p[:, 0:2]) + self.grid_xy[0] # x, y
wh = torch.exp(p[:, 2:4]) * self.anchor_wh[0] # width, height # wh = torch.exp(p[:, 2:4]) * self.anchor_wh[0] # width, height
p_conf = torch.sigmoid(p[:, 4:5]) # Conf # p_conf = torch.sigmoid(p[:, 4:5]) # Conf
p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf # p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf
return torch.cat((xy / nG, wh, p_conf, p_cls), 1) # return torch.cat((xy / nG, wh, p_conf, p_cls), 1).t()
# p = p.view(1, -1, 85) p = p.view(1, -1, 85)
# xy = torch.sigmoid(p[..., 0:2]) + self.grid_xy # x, y xy = torch.sigmoid(p[..., 0:2]) + self.grid_xy # x, y
# wh = torch.exp(p[..., 2:4]) * self.anchor_wh # width, height wh = torch.exp(p[..., 2:4]) * self.anchor_wh # width, height
# p_conf = torch.sigmoid(p[..., 4:5]) # Conf p_conf = torch.sigmoid(p[..., 4:5]) # Conf
# p_cls = p[..., 5:85] p_cls = p[..., 5:85]
# # Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py
# # Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py # p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf
# # p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf p_cls = torch.exp(p_cls).permute((2, 1, 0))
# p_cls = torch.exp(p_cls).permute((2, 1, 0)) p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent
# p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent p_cls = p_cls.permute(2, 1, 0)
# p_cls = p_cls.permute(2, 1, 0) return torch.cat((xy / nG, wh, p_conf, p_cls), 2).squeeze().t()
#
# return torch.cat((xy / nG, wh, p_conf, p_cls), 2).squeeze().t()
p[..., 0] = torch.sigmoid(p[..., 0]) + self.grid_x # x p[..., 0] = torch.sigmoid(p[..., 0]) + self.grid_x # x
p[..., 1] = torch.sigmoid(p[..., 1]) + self.grid_y # y p[..., 1] = torch.sigmoid(p[..., 1]) + self.grid_y # y
@ -292,8 +290,8 @@ class Darknet(nn.Module):
self.losses['nT'] /= 3 self.losses['nT'] /= 3
if ONNX_EXPORT: if ONNX_EXPORT:
output = torch.cat(output, 0) # merge the 3 layers 85 x (507, 2028, 8112) to 85 x 10647 output = torch.cat(output, 1) # merge the 3 layers 85 x (507, 2028, 8112) to 85 x 10647
return output[:, 5:85], output[:, :4] # ONNX scores, boxes return output[5:85].t(), output[:4].t() # ONNX scores, boxes
return sum(output) if is_training else torch.cat(output, 1) return sum(output) if is_training else torch.cat(output, 1)