Merge pull request #127 from dseuss/master

ONNX export for custom dataset
This commit is contained in:
Glenn Jocher 2019-03-16 12:14:06 +02:00 committed by GitHub
commit 8c730e03cd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 4 additions and 4 deletions

View File

@ -189,11 +189,11 @@ class YOLOLayer(nn.Module):
# p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf # p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf
# return torch.cat((xy / nG, wh, p_conf, p_cls), 1).t() # return torch.cat((xy / nG, wh, p_conf, p_cls), 1).t()
p = p.view(1, -1, 85) p = p.view(1, -1, 5 + self.nC)
xy = xy + grid_xy # x, y xy = xy.view(bs, self.nA * nG * nG, 2) + grid_xy # x, y
wh = torch.exp(p[..., 2:4]) * anchor_wh # width, height wh = torch.exp(p[..., 2:4]) * anchor_wh # width, height
p_conf = torch.sigmoid(p[..., 4:5]) # Conf p_conf = torch.sigmoid(p[..., 4:5]) # Conf
p_cls = p[..., 5:85] p_cls = p[..., 5:5 + self.nC]
# Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py # Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py
# p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf # p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf
p_cls = torch.exp(p_cls).permute((2, 1, 0)) p_cls = torch.exp(p_cls).permute((2, 1, 0))
@ -260,7 +260,7 @@ class Darknet(nn.Module):
if ONNX_EXPORT: if ONNX_EXPORT:
output = torch.cat(output, 1) # merge the 3 layers 85 x (507, 2028, 8112) to 85 x 10647 output = torch.cat(output, 1) # merge the 3 layers 85 x (507, 2028, 8112) to 85 x 10647
return output[5:85].t(), output[:4].t() # ONNX scores, boxes return output[5:].t(), output[:4].t() # ONNX scores, boxes
return sum(output) if is_training else torch.cat(output, 1) return sum(output) if is_training else torch.cat(output, 1)