diff --git a/README.md b/README.md index 36989dd9..bab72687 100755 --- a/README.md +++ b/README.md @@ -79,18 +79,19 @@ HS**V** Intensity | +/- 50% https://cloud.google.com/deep-learning-vm/ **Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory) **CPU platform:** Intel Skylake -**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.80/hr) CUDA with Nvidia Apex FP16/32 +**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.80/hr) CUDA with [Nvidia Apex](https://github.com/NVIDIA/apex) FP16/32 **HDD:** 100 GB SSD **Dataset:** COCO train 2014 (117,263 images) GPUs | `batch_size` | batch time | epoch time | epoch cost --- |---| --- | --- | --- -1 K80 | 64 (32x2) | 2.9s | 175min | $0.58 -1 T4 | 64 (32x2) | 0.80s | 49min | $0.29 -2 T4 | 64 (64x1) | 0.52s | 32min | $0.36 -1 2080ti | 64 (32x2) | - | - | - -1 V100 | 64 (32x2) | 0.38s | 23min | $0.31 -2 V100 | 64 (64x1) | 0.30s | 18min | $0.46 +K80 | 64 (32x2) | 2.90 s | 175 min | $0.58 +T4 | 64 (32x2) | 0.80 s | 49 min | $0.29 +T4 x2 | 64 (64x1) | 0.52 s | 32 min | $0.36 +V100 | 64 (32x2) | 0.38 s | 23 min | $0.31 +V100 x2 | 64 (64x1) | 0.30 s | 18 min | $0.46 +2080Ti | 64 (32x2) | 0.46 s | 28 min | - + # Inference diff --git a/utils/datasets.py b/utils/datasets.py index 9ec63800..d666f9d5 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -40,6 +40,7 @@ def exif_size(img): class LoadImages: # for inference def __init__(self, path, img_size=416): + path = str(Path(path)) # os-agnostic files = [] if os.path.isdir(path): files = sorted(glob.glob(os.path.join(path, '*.*'))) @@ -154,6 +155,7 @@ class LoadWebcam: # for inference class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False): + path = str(Path(path)) # os-agnostic with open(path, 'r') as f: self.img_files = [x for x in f.read().splitlines() if os.path.splitext(x)[-1].lower() in img_formats]