Update README.md

This commit is contained in:
Glenn Jocher 2019-03-20 14:08:24 +02:00 committed by GitHub
parent 7e8fc146e1
commit 87cb8e661b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 40 additions and 38 deletions

View File

@ -92,54 +92,56 @@ Run `detect.py` with `webcam=True` to show a live webcam feed.
# Pretrained Weights # Pretrained Weights
**Darknet** format: - Darknet `*.weights` format: https://pjreddie.com/media/files/yolov3.weights
- https://pjreddie.com/media/files/yolov3.weights - PyTorch `*.pt` format: https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI
- https://pjreddie.com/media/files/yolov3-tiny.weights
**PyTorch** format:
- https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI
# mAP # mAP
Run `test.py --save-json --conf-thres 0.005` to test the official YOLOv3 weights `weights/yolov3.weights` against the 5000 validation images. Compare to .579 at 608 x 608 reported in darknet (https://arxiv.org/abs/1804.02767). - Use `test.py --weights weights/yolov3.weights` to test the official YOLOv3 weights.
- Use `test.py --weights weights/latest.pt` to test the latest training results.
- Compare to official darknet results from https://arxiv.org/abs/1804.02767.
Run `test.py --weights weights/latest.pt` to validate against the latest training results. Hyperparameter settings and loss equation changes affect these results significantly, and additional trade studies may be needed to further improve this. <i></i> | ultralytics/yolov3 | darknet
--- | ---| ---
YOLOv3-320 | 51.3 | 51.5
YOLOv3-416 | 54.9 | 55.3
YOLOv3-608 | 57.9 | 57.9
``` bash ``` bash
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh # bash yolov3/data/get_coco_dataset.sh
sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3 sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3 && python3 test.py --save-json --conf-thres 0.005 cd yolov3
... python3 test.py --save-json --conf-thres 0.001 --img-size 416
Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights')
Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.005, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights') Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.308
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.549
loading annotations into memory... Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.310
Done (t=4.17s) Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.141
creating index... Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.334
index created! Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.454
Loading and preparing results... Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.267
DONE (t=1.75s) Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.403
creating index... Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.428
index created! Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
Running per image evaluation... Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.464
Evaluate annotation type *bbox* Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
DONE (t=39.30s).
Accumulating evaluation results... python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
DONE (t=4.63s). Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights')
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.307 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.328
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.545 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.579
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.309 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.335
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.140 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.190
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.333 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.357
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.453 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.266 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.279
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.429
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.415 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.456
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.222 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.299
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.449 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.483
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572
``` ```
# Contact # Contact