Update README.md
This commit is contained in:
		
							parent
							
								
									613ce1be1a
								
							
						
					
					
						commit
						83c6eba700
					
				
							
								
								
									
										43
									
								
								README.md
								
								
								
								
							
							
						
						
									
										43
									
								
								README.md
								
								
								
								
							|  | @ -84,11 +84,48 @@ Run `detect.py` with `webcam=True` to show a live webcam feed. | ||||||
| **PyTorch** format: | **PyTorch** format: | ||||||
| - https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI | - https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI | ||||||
| 
 | 
 | ||||||
| # Validation mAP | # mAP | ||||||
| 
 | 
 | ||||||
| Run `test.py` to validate the official YOLOv3 weights `weights/yolov3.weights` against the 5000 validation images. You should obtain a .584 mAP at `--img-size 416`, or .586 at `--img-size 608` using this repo, compared to .579 at 608 x 608 reported in darknet (https://arxiv.org/abs/1804.02767). | Run `test.py --save-json --conf-thres 0.005` to test the official YOLOv3 weights `weights/yolov3.weights` against the 5000 validation images. Compare to .579 at 608 x 608 reported in darknet (https://arxiv.org/abs/1804.02767). | ||||||
| 
 | 
 | ||||||
| Run `test.py --weights weights/latest.pt` to validate against the latest training results. **Default training settings produce a 0.522 mAP at epoch 62.** Hyperparameter settings and loss equation changes affect these results significantly, and additional trade studies may be needed to further improve this. | Run `test.py --weights weights/latest.pt` to validate against the latest training results. Hyperparameter settings and loss equation changes affect these results significantly, and additional trade studies may be needed to further improve this. | ||||||
|  | 
 | ||||||
|  | ``` bash | ||||||
|  | sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 | ||||||
|  | # bash yolov3/data/get_coco_dataset.sh | ||||||
|  | sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3 | ||||||
|  | cd yolov3 && python3 test.py --save-json --conf-thres 0.005 | ||||||
|  | 
 | ||||||
|  | ... | ||||||
|  | 
 | ||||||
|  | Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.005, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights') | ||||||
|  | 
 | ||||||
|  | loading annotations into memory... | ||||||
|  | Done (t=4.17s) | ||||||
|  | creating index... | ||||||
|  | index created! | ||||||
|  | Loading and preparing results... | ||||||
|  | DONE (t=1.75s) | ||||||
|  | creating index... | ||||||
|  | index created! | ||||||
|  | Running per image evaluation... | ||||||
|  | Evaluate annotation type *bbox* | ||||||
|  | DONE (t=39.30s). | ||||||
|  | Accumulating evaluation results... | ||||||
|  | DONE (t=4.63s). | ||||||
|  |  Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.307 | ||||||
|  |  Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.545 | ||||||
|  |  Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.309 | ||||||
|  |  Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.140 | ||||||
|  |  Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.333 | ||||||
|  |  Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.453 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.266 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.396 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.415 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.222 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.449 | ||||||
|  |  Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575 | ||||||
|  | ``` | ||||||
| 
 | 
 | ||||||
| # Contact | # Contact | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue