updates
This commit is contained in:
parent
616bbdb435
commit
7fb64dbf67
21
models.py
21
models.py
|
@ -7,7 +7,7 @@ import torch.nn.functional as F
|
|||
ONNX_EXPORT = False
|
||||
|
||||
|
||||
def create_modules(module_defs):
|
||||
def create_modules(module_defs, img_size):
|
||||
"""
|
||||
Constructs module list of layer blocks from module configuration in module_defs
|
||||
"""
|
||||
|
@ -75,7 +75,7 @@ def create_modules(module_defs):
|
|||
a = [(a[i], a[i + 1]) for i in range(0, len(a), 2)]
|
||||
modules = YOLOLayer(anchors=[a[i] for i in mask], # anchor list
|
||||
nc=int(mdef['classes']), # number of classes
|
||||
img_size=hyperparams['height'], # 416
|
||||
img_size=img_size, # (416, 416)
|
||||
yolo_index=yolo_index) # 0, 1 or 2
|
||||
else:
|
||||
print('Warning: Unrecognized Layer Type: ' + mdef['type'])
|
||||
|
@ -175,8 +175,7 @@ class Darknet(nn.Module):
|
|||
super(Darknet, self).__init__()
|
||||
|
||||
self.module_defs = parse_model_cfg(cfg)
|
||||
self.module_defs[0]['height'] = img_size
|
||||
self.module_list, self.routs = create_modules(self.module_defs)
|
||||
self.module_list, self.routs = create_modules(self.module_defs, img_size)
|
||||
self.yolo_layers = get_yolo_layers(self)
|
||||
|
||||
# Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
|
||||
|
@ -193,16 +192,16 @@ class Darknet(nn.Module):
|
|||
if mtype in ['convolutional', 'upsample', 'maxpool']:
|
||||
x = module(x)
|
||||
elif mtype == 'route':
|
||||
layer_i = [int(x) for x in mdef['layers'].split(',')]
|
||||
if len(layer_i) == 1:
|
||||
x = layer_outputs[layer_i[0]]
|
||||
layers = [int(x) for x in mdef['layers'].split(',')]
|
||||
if len(layers) == 1:
|
||||
x = layer_outputs[layers[0]]
|
||||
else:
|
||||
try:
|
||||
x = torch.cat([layer_outputs[i] for i in layer_i], 1)
|
||||
x = torch.cat([layer_outputs[i] for i in layers], 1)
|
||||
except: # apply stride 2 for darknet reorg layer
|
||||
layer_outputs[layer_i[1]] = F.interpolate(layer_outputs[layer_i[1]], scale_factor=[0.5, 0.5])
|
||||
x = torch.cat([layer_outputs[i] for i in layer_i], 1)
|
||||
# print(''), [print(layer_outputs[i].shape) for i in layer_i], print(x.shape)
|
||||
layer_outputs[layers[1]] = F.interpolate(layer_outputs[layers[1]], scale_factor=[0.5, 0.5])
|
||||
x = torch.cat([layer_outputs[i] for i in layers], 1)
|
||||
# print(''), [print(layer_outputs[i].shape) for i in layers], print(x.shape)
|
||||
elif mtype == 'shortcut':
|
||||
x = x + layer_outputs[int(mdef['from'])]
|
||||
elif mtype == 'yolo':
|
||||
|
|
Loading…
Reference in New Issue