Update README.md
This commit is contained in:
parent
a5468acb54
commit
7e8fc146e1
30
README.md
30
README.md
|
@ -45,21 +45,6 @@ Each epoch trains on 120,000 images from the train and validate COCO sets, and t
|
||||||
`from utils import utils; utils.plot_results()`
|
`from utils import utils; utils.plot_results()`
|
||||||
![Alt](https://user-images.githubusercontent.com/26833433/53494085-3251aa00-3a9d-11e9-8af7-8c08cf40d70b.png "train.py results")
|
![Alt](https://user-images.githubusercontent.com/26833433/53494085-3251aa00-3a9d-11e9-8af7-8c08cf40d70b.png "train.py results")
|
||||||
|
|
||||||
# Speed
|
|
||||||
|
|
||||||
https://cloud.google.com/deep-learning-vm/
|
|
||||||
**Machine type:** n1-highmem-4 (4 vCPUs, 26 GB memory)
|
|
||||||
**CPU platform:** Intel Skylake
|
|
||||||
**GPUs:** 1-4 x NVIDIA Tesla P100
|
|
||||||
**HDD:** 100 GB SSD
|
|
||||||
|
|
||||||
GPUs | `batch_size` | speed | COCO epoch
|
|
||||||
--- |---| --- | ---
|
|
||||||
(P100) | (images) | (s/batch) | (min/epoch)
|
|
||||||
1 | 24 | 0.84s | 70min
|
|
||||||
2 | 48 | 1.27s | 53min
|
|
||||||
4 | 96 | 2.11s | 44min
|
|
||||||
|
|
||||||
## Image Augmentation
|
## Image Augmentation
|
||||||
|
|
||||||
`datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.
|
`datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.
|
||||||
|
@ -76,6 +61,21 @@ HS**V** Intensity | +/- 50%
|
||||||
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/50525037-6cbcbc00-0ad9-11e9-8c38-9fd51af530e0.jpg">
|
<img src="https://user-images.githubusercontent.com/26833433/50525037-6cbcbc00-0ad9-11e9-8c38-9fd51af530e0.jpg">
|
||||||
|
|
||||||
|
## Speed
|
||||||
|
|
||||||
|
https://cloud.google.com/deep-learning-vm/
|
||||||
|
**Machine type:** n1-highmem-4 (4 vCPUs, 26 GB memory)
|
||||||
|
**CPU platform:** Intel Skylake
|
||||||
|
**GPUs:** 1-4 x NVIDIA Tesla P100
|
||||||
|
**HDD:** 100 GB SSD
|
||||||
|
|
||||||
|
GPUs | `batch_size` | speed | COCO epoch
|
||||||
|
--- |---| --- | ---
|
||||||
|
(P100) | (images) | (s/batch) | (min/epoch)
|
||||||
|
1 | 24 | 0.84s | 70min
|
||||||
|
2 | 48 | 1.27s | 53min
|
||||||
|
4 | 96 | 2.11s | 44min
|
||||||
|
|
||||||
# Inference
|
# Inference
|
||||||
|
|
||||||
Run `detect.py` to apply trained weights to an image, such as `zidane.jpg` from the `data/samples` folder:
|
Run `detect.py` to apply trained weights to an image, such as `zidane.jpg` from the `data/samples` folder:
|
||||||
|
|
Loading…
Reference in New Issue