Initial commit
This commit is contained in:
parent
a475620306
commit
7ad0494d44
217
.dockerignore
217
.dockerignore
|
@ -1,217 +0,0 @@
|
||||||
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
|
||||||
# .git
|
|
||||||
.cache
|
|
||||||
.idea
|
|
||||||
runs
|
|
||||||
output
|
|
||||||
coco
|
|
||||||
storage.googleapis.com
|
|
||||||
|
|
||||||
data/samples/*
|
|
||||||
!data/samples/zidane.jpg
|
|
||||||
!data/samples/bus.jpg
|
|
||||||
**/results*.txt
|
|
||||||
*.jpg
|
|
||||||
|
|
||||||
# Neural Network weights -----------------------------------------------------------------------------------------------
|
|
||||||
**/*.weights
|
|
||||||
**/*.pt
|
|
||||||
**/*.onnx
|
|
||||||
**/*.mlmodel
|
|
||||||
**/darknet53.conv.74
|
|
||||||
**/yolov3-tiny.conv.15
|
|
||||||
|
|
||||||
|
|
||||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
|
||||||
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
|
||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
env/
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
.hypothesis/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
.python-version
|
|
||||||
|
|
||||||
# celery beat schedule file
|
|
||||||
celerybeat-schedule
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# dotenv
|
|
||||||
.env
|
|
||||||
|
|
||||||
# virtualenv
|
|
||||||
.venv
|
|
||||||
venv/
|
|
||||||
ENV/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
||||||
|
|
||||||
|
|
||||||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
|
||||||
|
|
||||||
# General
|
|
||||||
.DS_Store
|
|
||||||
.AppleDouble
|
|
||||||
.LSOverride
|
|
||||||
|
|
||||||
# Icon must end with two \r
|
|
||||||
Icon
|
|
||||||
Icon?
|
|
||||||
|
|
||||||
# Thumbnails
|
|
||||||
._*
|
|
||||||
|
|
||||||
# Files that might appear in the root of a volume
|
|
||||||
.DocumentRevisions-V100
|
|
||||||
.fseventsd
|
|
||||||
.Spotlight-V100
|
|
||||||
.TemporaryItems
|
|
||||||
.Trashes
|
|
||||||
.VolumeIcon.icns
|
|
||||||
.com.apple.timemachine.donotpresent
|
|
||||||
|
|
||||||
# Directories potentially created on remote AFP share
|
|
||||||
.AppleDB
|
|
||||||
.AppleDesktop
|
|
||||||
Network Trash Folder
|
|
||||||
Temporary Items
|
|
||||||
.apdisk
|
|
||||||
|
|
||||||
|
|
||||||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
|
||||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
|
||||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
|
||||||
|
|
||||||
# User-specific stuff:
|
|
||||||
.idea/*
|
|
||||||
.idea/**/workspace.xml
|
|
||||||
.idea/**/tasks.xml
|
|
||||||
.idea/dictionaries
|
|
||||||
.html # Bokeh Plots
|
|
||||||
.pg # TensorFlow Frozen Graphs
|
|
||||||
.avi # videos
|
|
||||||
|
|
||||||
# Sensitive or high-churn files:
|
|
||||||
.idea/**/dataSources/
|
|
||||||
.idea/**/dataSources.ids
|
|
||||||
.idea/**/dataSources.local.xml
|
|
||||||
.idea/**/sqlDataSources.xml
|
|
||||||
.idea/**/dynamic.xml
|
|
||||||
.idea/**/uiDesigner.xml
|
|
||||||
|
|
||||||
# Gradle:
|
|
||||||
.idea/**/gradle.xml
|
|
||||||
.idea/**/libraries
|
|
||||||
|
|
||||||
# CMake
|
|
||||||
cmake-build-debug/
|
|
||||||
cmake-build-release/
|
|
||||||
|
|
||||||
# Mongo Explorer plugin:
|
|
||||||
.idea/**/mongoSettings.xml
|
|
||||||
|
|
||||||
## File-based project format:
|
|
||||||
*.iws
|
|
||||||
|
|
||||||
## Plugin-specific files:
|
|
||||||
|
|
||||||
# IntelliJ
|
|
||||||
out/
|
|
||||||
|
|
||||||
# mpeltonen/sbt-idea plugin
|
|
||||||
.idea_modules/
|
|
||||||
|
|
||||||
# JIRA plugin
|
|
||||||
atlassian-ide-plugin.xml
|
|
||||||
|
|
||||||
# Cursive Clojure plugin
|
|
||||||
.idea/replstate.xml
|
|
||||||
|
|
||||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
|
||||||
com_crashlytics_export_strings.xml
|
|
||||||
crashlytics.properties
|
|
||||||
crashlytics-build.properties
|
|
||||||
fabric.properties
|
|
|
@ -1,41 +0,0 @@
|
||||||
---
|
|
||||||
name: "\U0001F41BBug report"
|
|
||||||
about: Create a report to help us improve
|
|
||||||
title: ''
|
|
||||||
labels: bug
|
|
||||||
assignees: ''
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
Before submitting a bug report, please ensure that you are using the latest versions of:
|
|
||||||
- Python
|
|
||||||
- PyTorch
|
|
||||||
- This repository (run `git fetch && git status -uno` to check and `git pull` to update)
|
|
||||||
|
|
||||||
**Your issue must be reproducible on a public dataset (i.e COCO) using the latest version of the repository, and you must supply code to reproduce, or we can not help you.**
|
|
||||||
|
|
||||||
If this is a custom training question we suggest you include your `train*.jpg`, `test*.jpg` and `results.png` figures.
|
|
||||||
|
|
||||||
|
|
||||||
## 🐛 Bug
|
|
||||||
A clear and concise description of what the bug is.
|
|
||||||
|
|
||||||
## To Reproduce
|
|
||||||
**REQUIRED**: Code to reproduce your issue below
|
|
||||||
```
|
|
||||||
python train.py ...
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Expected behavior
|
|
||||||
A clear and concise description of what you expected to happen.
|
|
||||||
|
|
||||||
## Environment
|
|
||||||
If applicable, add screenshots to help explain your problem.
|
|
||||||
|
|
||||||
- OS: [e.g. Ubuntu]
|
|
||||||
- GPU [e.g. 2080 Ti]
|
|
||||||
|
|
||||||
|
|
||||||
## Additional context
|
|
||||||
Add any other context about the problem here.
|
|
|
@ -1,27 +0,0 @@
|
||||||
---
|
|
||||||
name: "\U0001F680Feature request"
|
|
||||||
about: Suggest an idea for this project
|
|
||||||
title: ''
|
|
||||||
labels: enhancement
|
|
||||||
assignees: ''
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## 🚀 Feature
|
|
||||||
<!-- A clear and concise description of the feature proposal -->
|
|
||||||
|
|
||||||
## Motivation
|
|
||||||
|
|
||||||
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->
|
|
||||||
|
|
||||||
## Pitch
|
|
||||||
|
|
||||||
<!-- A clear and concise description of what you want to happen. -->
|
|
||||||
|
|
||||||
## Alternatives
|
|
||||||
|
|
||||||
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->
|
|
||||||
|
|
||||||
## Additional context
|
|
||||||
|
|
||||||
<!-- Add any other context or screenshots about the feature request here. -->
|
|
|
@ -1,30 +0,0 @@
|
||||||
name: Greetings
|
|
||||||
|
|
||||||
on: [pull_request, issues]
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
greeting:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- uses: actions/first-interaction@v1
|
|
||||||
with:
|
|
||||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
|
||||||
pr-message: 'Hello @${{ github.actor }}, thank you for submitting a PR! We will respond as soon as possible.'
|
|
||||||
issue-message: |
|
|
||||||
Hello @${{ github.actor }}, thank you for your interest in our work! Ultralytics has open-sourced YOLOv5 at https://github.com/ultralytics/yolov5, featuring faster, lighter and more accurate object detection. YOLOv5 is recommended for all new projects.
|
|
||||||
|
|
||||||
<a href="https://apps.apple.com/app/id1452689527" target="_blank">
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="800"></a>
|
|
||||||
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/84200349-729f2680-aa5b-11ea-8f9a-604c9e01a658.png" width="800">
|
|
||||||
|
|
||||||
To continue with this repo, please visit our [Custom Training Tutorial](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) to get started, and see our [Google Colab Notebook](https://github.com/ultralytics/yolov3/blob/master/tutorial.ipynb), [Docker Image](https://hub.docker.com/r/ultralytics/yolov3), and [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart) for example environments.
|
|
||||||
|
|
||||||
If this is a bug report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
|
||||||
|
|
||||||
If this is a custom model or data training question, please note that Ultralytics does **not** provide free personal support. As a leader in vision ML and AI, we do offer professional consulting, from simple expert advice up to delivery of fully customized, end-to-end production solutions for our clients, such as:
|
|
||||||
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
|
|
||||||
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
|
|
||||||
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.
|
|
||||||
|
|
||||||
For more information please visit https://www.ultralytics.com.
|
|
|
@ -1,17 +0,0 @@
|
||||||
name: Close stale issues
|
|
||||||
on:
|
|
||||||
schedule:
|
|
||||||
- cron: "0 0 * * *"
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
stale:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- uses: actions/stale@v1
|
|
||||||
with:
|
|
||||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
|
||||||
stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove Stale label or comment or this will be closed in 5 days.'
|
|
||||||
stale-pr-message: 'This pull request is stale because it has been open 30 days with no activity. Remove Stale label or comment or this will be closed in 5 days.'
|
|
||||||
days-before-stale: 30
|
|
||||||
days-before-close: 5
|
|
||||||
exempt-issue-label: 'tutorial'
|
|
|
@ -1,244 +1,3 @@
|
||||||
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
|
weights/
|
||||||
*.jpg
|
runs/
|
||||||
*.jpeg
|
data/widok01-11_images
|
||||||
*.png
|
|
||||||
*.bmp
|
|
||||||
*.tif
|
|
||||||
*.tiff
|
|
||||||
*.heic
|
|
||||||
*.JPG
|
|
||||||
*.JPEG
|
|
||||||
*.PNG
|
|
||||||
*.BMP
|
|
||||||
*.TIF
|
|
||||||
*.TIFF
|
|
||||||
*.HEIC
|
|
||||||
*.mp4
|
|
||||||
*.mov
|
|
||||||
*.MOV
|
|
||||||
*.avi
|
|
||||||
*.data
|
|
||||||
*.json
|
|
||||||
|
|
||||||
*.cfg
|
|
||||||
!cfg/yolov3*.cfg
|
|
||||||
|
|
||||||
storage.googleapis.com
|
|
||||||
runs/*
|
|
||||||
data/*
|
|
||||||
!data/samples/zidane.jpg
|
|
||||||
!data/samples/bus.jpg
|
|
||||||
!data/coco.names
|
|
||||||
!data/coco_paper.names
|
|
||||||
!data/coco.data
|
|
||||||
!data/coco_*.data
|
|
||||||
!data/coco_*.txt
|
|
||||||
!data/trainvalno5k.shapes
|
|
||||||
!data/*.sh
|
|
||||||
|
|
||||||
pycocotools/*
|
|
||||||
results*.txt
|
|
||||||
gcp_test*.sh
|
|
||||||
|
|
||||||
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
|
|
||||||
*.m~
|
|
||||||
*.mat
|
|
||||||
!targets*.mat
|
|
||||||
|
|
||||||
# Neural Network weights -----------------------------------------------------------------------------------------------
|
|
||||||
*.weights
|
|
||||||
*.pt
|
|
||||||
*.onnx
|
|
||||||
*.mlmodel
|
|
||||||
darknet53.conv.74
|
|
||||||
yolov3-tiny.conv.15
|
|
||||||
|
|
||||||
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
|
||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
env/
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
.hypothesis/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
.python-version
|
|
||||||
|
|
||||||
# celery beat schedule file
|
|
||||||
celerybeat-schedule
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# dotenv
|
|
||||||
.env
|
|
||||||
|
|
||||||
# virtualenv
|
|
||||||
.venv
|
|
||||||
venv/
|
|
||||||
ENV/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
||||||
|
|
||||||
|
|
||||||
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
|
||||||
|
|
||||||
# General
|
|
||||||
.DS_Store
|
|
||||||
.AppleDouble
|
|
||||||
.LSOverride
|
|
||||||
|
|
||||||
# Icon must end with two \r
|
|
||||||
Icon
|
|
||||||
Icon?
|
|
||||||
|
|
||||||
# Thumbnails
|
|
||||||
._*
|
|
||||||
|
|
||||||
# Files that might appear in the root of a volume
|
|
||||||
.DocumentRevisions-V100
|
|
||||||
.fseventsd
|
|
||||||
.Spotlight-V100
|
|
||||||
.TemporaryItems
|
|
||||||
.Trashes
|
|
||||||
.VolumeIcon.icns
|
|
||||||
.com.apple.timemachine.donotpresent
|
|
||||||
|
|
||||||
# Directories potentially created on remote AFP share
|
|
||||||
.AppleDB
|
|
||||||
.AppleDesktop
|
|
||||||
Network Trash Folder
|
|
||||||
Temporary Items
|
|
||||||
.apdisk
|
|
||||||
|
|
||||||
|
|
||||||
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
|
||||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
|
||||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
|
||||||
|
|
||||||
# User-specific stuff:
|
|
||||||
.idea/*
|
|
||||||
.idea/**/workspace.xml
|
|
||||||
.idea/**/tasks.xml
|
|
||||||
.idea/dictionaries
|
|
||||||
.html # Bokeh Plots
|
|
||||||
.pg # TensorFlow Frozen Graphs
|
|
||||||
.avi # videos
|
|
||||||
|
|
||||||
# Sensitive or high-churn files:
|
|
||||||
.idea/**/dataSources/
|
|
||||||
.idea/**/dataSources.ids
|
|
||||||
.idea/**/dataSources.local.xml
|
|
||||||
.idea/**/sqlDataSources.xml
|
|
||||||
.idea/**/dynamic.xml
|
|
||||||
.idea/**/uiDesigner.xml
|
|
||||||
|
|
||||||
# Gradle:
|
|
||||||
.idea/**/gradle.xml
|
|
||||||
.idea/**/libraries
|
|
||||||
|
|
||||||
# CMake
|
|
||||||
cmake-build-debug/
|
|
||||||
cmake-build-release/
|
|
||||||
|
|
||||||
# Mongo Explorer plugin:
|
|
||||||
.idea/**/mongoSettings.xml
|
|
||||||
|
|
||||||
## File-based project format:
|
|
||||||
*.iws
|
|
||||||
|
|
||||||
## Plugin-specific files:
|
|
||||||
|
|
||||||
# IntelliJ
|
|
||||||
out/
|
|
||||||
|
|
||||||
# mpeltonen/sbt-idea plugin
|
|
||||||
.idea_modules/
|
|
||||||
|
|
||||||
# JIRA plugin
|
|
||||||
atlassian-ide-plugin.xml
|
|
||||||
|
|
||||||
# Cursive Clojure plugin
|
|
||||||
.idea/replstate.xml
|
|
||||||
|
|
||||||
# Crashlytics plugin (for Android Studio and IntelliJ)
|
|
||||||
com_crashlytics_export_strings.xml
|
|
||||||
crashlytics.properties
|
|
||||||
crashlytics-build.properties
|
|
||||||
fabric.properties
|
|
||||||
|
|
62
Dockerfile
62
Dockerfile
|
@ -1,62 +0,0 @@
|
||||||
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
|
||||||
FROM nvcr.io/nvidia/pytorch:20.03-py3
|
|
||||||
|
|
||||||
# Install dependencies (pip or conda)
|
|
||||||
RUN pip install -U gsutil
|
|
||||||
# RUN pip install -U -r requirements.txt
|
|
||||||
# RUN conda update -n base -c defaults conda
|
|
||||||
# RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow
|
|
||||||
# RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools
|
|
||||||
|
|
||||||
## Install OpenCV with Gstreamer support
|
|
||||||
#WORKDIR /usr/src
|
|
||||||
#RUN pip uninstall -y opencv-python
|
|
||||||
#RUN apt-get update
|
|
||||||
#RUN apt-get install -y gstreamer1.0-tools gstreamer1.0-python3-dbg-plugin-loader libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
|
|
||||||
#RUN git clone https://github.com/opencv/opencv.git && cd opencv && git checkout 4.1.1 && mkdir build
|
|
||||||
#RUN git clone https://github.com/opencv/opencv_contrib.git && cd opencv_contrib && git checkout 4.1.1
|
|
||||||
#RUN cd opencv/build && cmake ../ \
|
|
||||||
# -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
|
|
||||||
# -D BUILD_OPENCV_PYTHON3=ON \
|
|
||||||
# -D PYTHON3_EXECUTABLE=/opt/conda/bin/python \
|
|
||||||
# -D PYTHON3_INCLUDE_PATH=/opt/conda/include/python3.6m \
|
|
||||||
# -D PYTHON3_LIBRARIES=/opt/conda/lib/python3.6/site-packages \
|
|
||||||
# -D WITH_GSTREAMER=ON \
|
|
||||||
# -D WITH_FFMPEG=OFF \
|
|
||||||
# && make && make install && ldconfig
|
|
||||||
#RUN cd /usr/local/lib/python3.6/site-packages/cv2/python-3.6/ && mv cv2.cpython-36m-x86_64-linux-gnu.so cv2.so
|
|
||||||
#RUN cd /opt/conda/lib/python3.6/site-packages/ && ln -s /usr/local/lib/python3.6/site-packages/cv2/python-3.6/cv2.so cv2.so
|
|
||||||
#RUN python3 -c "import cv2; print(cv2.getBuildInformation())"
|
|
||||||
|
|
||||||
# Create working directory
|
|
||||||
RUN mkdir -p /usr/src/app
|
|
||||||
WORKDIR /usr/src/app
|
|
||||||
|
|
||||||
# Copy contents
|
|
||||||
COPY . /usr/src/app
|
|
||||||
|
|
||||||
# Copy weights
|
|
||||||
#RUN python3 -c "from models import *; \
|
|
||||||
#attempt_download('weights/yolov3.pt'); \
|
|
||||||
#attempt_download('weights/yolov3-spp.pt')"
|
|
||||||
|
|
||||||
|
|
||||||
# --------------------------------------------------- Extras Below ---------------------------------------------------
|
|
||||||
|
|
||||||
# Build and Push
|
|
||||||
# t=ultralytics/yolov3:v0 && sudo docker build -t $t . && sudo docker push $t
|
|
||||||
|
|
||||||
# Run
|
|
||||||
# t=ultralytics/yolov3:v0 && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host $t bash
|
|
||||||
|
|
||||||
# Pull and Run with local directory access
|
|
||||||
# t=ultralytics/yolov3:v0 && sudo docker pull $t && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t bash
|
|
||||||
|
|
||||||
# Kill all
|
|
||||||
# sudo docker kill "$(sudo docker ps -q)"
|
|
||||||
|
|
||||||
# Kill all image-based
|
|
||||||
# sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov3:v0)
|
|
||||||
|
|
||||||
# Run bash for loop
|
|
||||||
# sudo docker run --gpus all --ipc=host ultralytics/yolov3:v0 while true; do python3 train.py --evolve; done
|
|
674
LICENSE
674
LICENSE
|
@ -1,674 +0,0 @@
|
||||||
GNU GENERAL PUBLIC LICENSE
|
|
||||||
Version 3, 29 June 2007
|
|
||||||
|
|
||||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
|
||||||
Everyone is permitted to copy and distribute verbatim copies
|
|
||||||
of this license document, but changing it is not allowed.
|
|
||||||
|
|
||||||
Preamble
|
|
||||||
|
|
||||||
The GNU General Public License is a free, copyleft license for
|
|
||||||
software and other kinds of works.
|
|
||||||
|
|
||||||
The licenses for most software and other practical works are designed
|
|
||||||
to take away your freedom to share and change the works. By contrast,
|
|
||||||
the GNU General Public License is intended to guarantee your freedom to
|
|
||||||
share and change all versions of a program--to make sure it remains free
|
|
||||||
software for all its users. We, the Free Software Foundation, use the
|
|
||||||
GNU General Public License for most of our software; it applies also to
|
|
||||||
any other work released this way by its authors. You can apply it to
|
|
||||||
your programs, too.
|
|
||||||
|
|
||||||
When we speak of free software, we are referring to freedom, not
|
|
||||||
price. Our General Public Licenses are designed to make sure that you
|
|
||||||
have the freedom to distribute copies of free software (and charge for
|
|
||||||
them if you wish), that you receive source code or can get it if you
|
|
||||||
want it, that you can change the software or use pieces of it in new
|
|
||||||
free programs, and that you know you can do these things.
|
|
||||||
|
|
||||||
To protect your rights, we need to prevent others from denying you
|
|
||||||
these rights or asking you to surrender the rights. Therefore, you have
|
|
||||||
certain responsibilities if you distribute copies of the software, or if
|
|
||||||
you modify it: responsibilities to respect the freedom of others.
|
|
||||||
|
|
||||||
For example, if you distribute copies of such a program, whether
|
|
||||||
gratis or for a fee, you must pass on to the recipients the same
|
|
||||||
freedoms that you received. You must make sure that they, too, receive
|
|
||||||
or can get the source code. And you must show them these terms so they
|
|
||||||
know their rights.
|
|
||||||
|
|
||||||
Developers that use the GNU GPL protect your rights with two steps:
|
|
||||||
(1) assert copyright on the software, and (2) offer you this License
|
|
||||||
giving you legal permission to copy, distribute and/or modify it.
|
|
||||||
|
|
||||||
For the developers' and authors' protection, the GPL clearly explains
|
|
||||||
that there is no warranty for this free software. For both users' and
|
|
||||||
authors' sake, the GPL requires that modified versions be marked as
|
|
||||||
changed, so that their problems will not be attributed erroneously to
|
|
||||||
authors of previous versions.
|
|
||||||
|
|
||||||
Some devices are designed to deny users access to install or run
|
|
||||||
modified versions of the software inside them, although the manufacturer
|
|
||||||
can do so. This is fundamentally incompatible with the aim of
|
|
||||||
protecting users' freedom to change the software. The systematic
|
|
||||||
pattern of such abuse occurs in the area of products for individuals to
|
|
||||||
use, which is precisely where it is most unacceptable. Therefore, we
|
|
||||||
have designed this version of the GPL to prohibit the practice for those
|
|
||||||
products. If such problems arise substantially in other domains, we
|
|
||||||
stand ready to extend this provision to those domains in future versions
|
|
||||||
of the GPL, as needed to protect the freedom of users.
|
|
||||||
|
|
||||||
Finally, every program is threatened constantly by software patents.
|
|
||||||
States should not allow patents to restrict development and use of
|
|
||||||
software on general-purpose computers, but in those that do, we wish to
|
|
||||||
avoid the special danger that patents applied to a free program could
|
|
||||||
make it effectively proprietary. To prevent this, the GPL assures that
|
|
||||||
patents cannot be used to render the program non-free.
|
|
||||||
|
|
||||||
The precise terms and conditions for copying, distribution and
|
|
||||||
modification follow.
|
|
||||||
|
|
||||||
TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
0. Definitions.
|
|
||||||
|
|
||||||
"This License" refers to version 3 of the GNU General Public License.
|
|
||||||
|
|
||||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
|
||||||
works, such as semiconductor masks.
|
|
||||||
|
|
||||||
"The Program" refers to any copyrightable work licensed under this
|
|
||||||
License. Each licensee is addressed as "you". "Licensees" and
|
|
||||||
"recipients" may be individuals or organizations.
|
|
||||||
|
|
||||||
To "modify" a work means to copy from or adapt all or part of the work
|
|
||||||
in a fashion requiring copyright permission, other than the making of an
|
|
||||||
exact copy. The resulting work is called a "modified version" of the
|
|
||||||
earlier work or a work "based on" the earlier work.
|
|
||||||
|
|
||||||
A "covered work" means either the unmodified Program or a work based
|
|
||||||
on the Program.
|
|
||||||
|
|
||||||
To "propagate" a work means to do anything with it that, without
|
|
||||||
permission, would make you directly or secondarily liable for
|
|
||||||
infringement under applicable copyright law, except executing it on a
|
|
||||||
computer or modifying a private copy. Propagation includes copying,
|
|
||||||
distribution (with or without modification), making available to the
|
|
||||||
public, and in some countries other activities as well.
|
|
||||||
|
|
||||||
To "convey" a work means any kind of propagation that enables other
|
|
||||||
parties to make or receive copies. Mere interaction with a user through
|
|
||||||
a computer network, with no transfer of a copy, is not conveying.
|
|
||||||
|
|
||||||
An interactive user interface displays "Appropriate Legal Notices"
|
|
||||||
to the extent that it includes a convenient and prominently visible
|
|
||||||
feature that (1) displays an appropriate copyright notice, and (2)
|
|
||||||
tells the user that there is no warranty for the work (except to the
|
|
||||||
extent that warranties are provided), that licensees may convey the
|
|
||||||
work under this License, and how to view a copy of this License. If
|
|
||||||
the interface presents a list of user commands or options, such as a
|
|
||||||
menu, a prominent item in the list meets this criterion.
|
|
||||||
|
|
||||||
1. Source Code.
|
|
||||||
|
|
||||||
The "source code" for a work means the preferred form of the work
|
|
||||||
for making modifications to it. "Object code" means any non-source
|
|
||||||
form of a work.
|
|
||||||
|
|
||||||
A "Standard Interface" means an interface that either is an official
|
|
||||||
standard defined by a recognized standards body, or, in the case of
|
|
||||||
interfaces specified for a particular programming language, one that
|
|
||||||
is widely used among developers working in that language.
|
|
||||||
|
|
||||||
The "System Libraries" of an executable work include anything, other
|
|
||||||
than the work as a whole, that (a) is included in the normal form of
|
|
||||||
packaging a Major Component, but which is not part of that Major
|
|
||||||
Component, and (b) serves only to enable use of the work with that
|
|
||||||
Major Component, or to implement a Standard Interface for which an
|
|
||||||
implementation is available to the public in source code form. A
|
|
||||||
"Major Component", in this context, means a major essential component
|
|
||||||
(kernel, window system, and so on) of the specific operating system
|
|
||||||
(if any) on which the executable work runs, or a compiler used to
|
|
||||||
produce the work, or an object code interpreter used to run it.
|
|
||||||
|
|
||||||
The "Corresponding Source" for a work in object code form means all
|
|
||||||
the source code needed to generate, install, and (for an executable
|
|
||||||
work) run the object code and to modify the work, including scripts to
|
|
||||||
control those activities. However, it does not include the work's
|
|
||||||
System Libraries, or general-purpose tools or generally available free
|
|
||||||
programs which are used unmodified in performing those activities but
|
|
||||||
which are not part of the work. For example, Corresponding Source
|
|
||||||
includes interface definition files associated with source files for
|
|
||||||
the work, and the source code for shared libraries and dynamically
|
|
||||||
linked subprograms that the work is specifically designed to require,
|
|
||||||
such as by intimate data communication or control flow between those
|
|
||||||
subprograms and other parts of the work.
|
|
||||||
|
|
||||||
The Corresponding Source need not include anything that users
|
|
||||||
can regenerate automatically from other parts of the Corresponding
|
|
||||||
Source.
|
|
||||||
|
|
||||||
The Corresponding Source for a work in source code form is that
|
|
||||||
same work.
|
|
||||||
|
|
||||||
2. Basic Permissions.
|
|
||||||
|
|
||||||
All rights granted under this License are granted for the term of
|
|
||||||
copyright on the Program, and are irrevocable provided the stated
|
|
||||||
conditions are met. This License explicitly affirms your unlimited
|
|
||||||
permission to run the unmodified Program. The output from running a
|
|
||||||
covered work is covered by this License only if the output, given its
|
|
||||||
content, constitutes a covered work. This License acknowledges your
|
|
||||||
rights of fair use or other equivalent, as provided by copyright law.
|
|
||||||
|
|
||||||
You may make, run and propagate covered works that you do not
|
|
||||||
convey, without conditions so long as your license otherwise remains
|
|
||||||
in force. You may convey covered works to others for the sole purpose
|
|
||||||
of having them make modifications exclusively for you, or provide you
|
|
||||||
with facilities for running those works, provided that you comply with
|
|
||||||
the terms of this License in conveying all material for which you do
|
|
||||||
not control copyright. Those thus making or running the covered works
|
|
||||||
for you must do so exclusively on your behalf, under your direction
|
|
||||||
and control, on terms that prohibit them from making any copies of
|
|
||||||
your copyrighted material outside their relationship with you.
|
|
||||||
|
|
||||||
Conveying under any other circumstances is permitted solely under
|
|
||||||
the conditions stated below. Sublicensing is not allowed; section 10
|
|
||||||
makes it unnecessary.
|
|
||||||
|
|
||||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
|
||||||
|
|
||||||
No covered work shall be deemed part of an effective technological
|
|
||||||
measure under any applicable law fulfilling obligations under article
|
|
||||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
|
||||||
similar laws prohibiting or restricting circumvention of such
|
|
||||||
measures.
|
|
||||||
|
|
||||||
When you convey a covered work, you waive any legal power to forbid
|
|
||||||
circumvention of technological measures to the extent such circumvention
|
|
||||||
is effected by exercising rights under this License with respect to
|
|
||||||
the covered work, and you disclaim any intention to limit operation or
|
|
||||||
modification of the work as a means of enforcing, against the work's
|
|
||||||
users, your or third parties' legal rights to forbid circumvention of
|
|
||||||
technological measures.
|
|
||||||
|
|
||||||
4. Conveying Verbatim Copies.
|
|
||||||
|
|
||||||
You may convey verbatim copies of the Program's source code as you
|
|
||||||
receive it, in any medium, provided that you conspicuously and
|
|
||||||
appropriately publish on each copy an appropriate copyright notice;
|
|
||||||
keep intact all notices stating that this License and any
|
|
||||||
non-permissive terms added in accord with section 7 apply to the code;
|
|
||||||
keep intact all notices of the absence of any warranty; and give all
|
|
||||||
recipients a copy of this License along with the Program.
|
|
||||||
|
|
||||||
You may charge any price or no price for each copy that you convey,
|
|
||||||
and you may offer support or warranty protection for a fee.
|
|
||||||
|
|
||||||
5. Conveying Modified Source Versions.
|
|
||||||
|
|
||||||
You may convey a work based on the Program, or the modifications to
|
|
||||||
produce it from the Program, in the form of source code under the
|
|
||||||
terms of section 4, provided that you also meet all of these conditions:
|
|
||||||
|
|
||||||
a) The work must carry prominent notices stating that you modified
|
|
||||||
it, and giving a relevant date.
|
|
||||||
|
|
||||||
b) The work must carry prominent notices stating that it is
|
|
||||||
released under this License and any conditions added under section
|
|
||||||
7. This requirement modifies the requirement in section 4 to
|
|
||||||
"keep intact all notices".
|
|
||||||
|
|
||||||
c) You must license the entire work, as a whole, under this
|
|
||||||
License to anyone who comes into possession of a copy. This
|
|
||||||
License will therefore apply, along with any applicable section 7
|
|
||||||
additional terms, to the whole of the work, and all its parts,
|
|
||||||
regardless of how they are packaged. This License gives no
|
|
||||||
permission to license the work in any other way, but it does not
|
|
||||||
invalidate such permission if you have separately received it.
|
|
||||||
|
|
||||||
d) If the work has interactive user interfaces, each must display
|
|
||||||
Appropriate Legal Notices; however, if the Program has interactive
|
|
||||||
interfaces that do not display Appropriate Legal Notices, your
|
|
||||||
work need not make them do so.
|
|
||||||
|
|
||||||
A compilation of a covered work with other separate and independent
|
|
||||||
works, which are not by their nature extensions of the covered work,
|
|
||||||
and which are not combined with it such as to form a larger program,
|
|
||||||
in or on a volume of a storage or distribution medium, is called an
|
|
||||||
"aggregate" if the compilation and its resulting copyright are not
|
|
||||||
used to limit the access or legal rights of the compilation's users
|
|
||||||
beyond what the individual works permit. Inclusion of a covered work
|
|
||||||
in an aggregate does not cause this License to apply to the other
|
|
||||||
parts of the aggregate.
|
|
||||||
|
|
||||||
6. Conveying Non-Source Forms.
|
|
||||||
|
|
||||||
You may convey a covered work in object code form under the terms
|
|
||||||
of sections 4 and 5, provided that you also convey the
|
|
||||||
machine-readable Corresponding Source under the terms of this License,
|
|
||||||
in one of these ways:
|
|
||||||
|
|
||||||
a) Convey the object code in, or embodied in, a physical product
|
|
||||||
(including a physical distribution medium), accompanied by the
|
|
||||||
Corresponding Source fixed on a durable physical medium
|
|
||||||
customarily used for software interchange.
|
|
||||||
|
|
||||||
b) Convey the object code in, or embodied in, a physical product
|
|
||||||
(including a physical distribution medium), accompanied by a
|
|
||||||
written offer, valid for at least three years and valid for as
|
|
||||||
long as you offer spare parts or customer support for that product
|
|
||||||
model, to give anyone who possesses the object code either (1) a
|
|
||||||
copy of the Corresponding Source for all the software in the
|
|
||||||
product that is covered by this License, on a durable physical
|
|
||||||
medium customarily used for software interchange, for a price no
|
|
||||||
more than your reasonable cost of physically performing this
|
|
||||||
conveying of source, or (2) access to copy the
|
|
||||||
Corresponding Source from a network server at no charge.
|
|
||||||
|
|
||||||
c) Convey individual copies of the object code with a copy of the
|
|
||||||
written offer to provide the Corresponding Source. This
|
|
||||||
alternative is allowed only occasionally and noncommercially, and
|
|
||||||
only if you received the object code with such an offer, in accord
|
|
||||||
with subsection 6b.
|
|
||||||
|
|
||||||
d) Convey the object code by offering access from a designated
|
|
||||||
place (gratis or for a charge), and offer equivalent access to the
|
|
||||||
Corresponding Source in the same way through the same place at no
|
|
||||||
further charge. You need not require recipients to copy the
|
|
||||||
Corresponding Source along with the object code. If the place to
|
|
||||||
copy the object code is a network server, the Corresponding Source
|
|
||||||
may be on a different server (operated by you or a third party)
|
|
||||||
that supports equivalent copying facilities, provided you maintain
|
|
||||||
clear directions next to the object code saying where to find the
|
|
||||||
Corresponding Source. Regardless of what server hosts the
|
|
||||||
Corresponding Source, you remain obligated to ensure that it is
|
|
||||||
available for as long as needed to satisfy these requirements.
|
|
||||||
|
|
||||||
e) Convey the object code using peer-to-peer transmission, provided
|
|
||||||
you inform other peers where the object code and Corresponding
|
|
||||||
Source of the work are being offered to the general public at no
|
|
||||||
charge under subsection 6d.
|
|
||||||
|
|
||||||
A separable portion of the object code, whose source code is excluded
|
|
||||||
from the Corresponding Source as a System Library, need not be
|
|
||||||
included in conveying the object code work.
|
|
||||||
|
|
||||||
A "User Product" is either (1) a "consumer product", which means any
|
|
||||||
tangible personal property which is normally used for personal, family,
|
|
||||||
or household purposes, or (2) anything designed or sold for incorporation
|
|
||||||
into a dwelling. In determining whether a product is a consumer product,
|
|
||||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
|
||||||
product received by a particular user, "normally used" refers to a
|
|
||||||
typical or common use of that class of product, regardless of the status
|
|
||||||
of the particular user or of the way in which the particular user
|
|
||||||
actually uses, or expects or is expected to use, the product. A product
|
|
||||||
is a consumer product regardless of whether the product has substantial
|
|
||||||
commercial, industrial or non-consumer uses, unless such uses represent
|
|
||||||
the only significant mode of use of the product.
|
|
||||||
|
|
||||||
"Installation Information" for a User Product means any methods,
|
|
||||||
procedures, authorization keys, or other information required to install
|
|
||||||
and execute modified versions of a covered work in that User Product from
|
|
||||||
a modified version of its Corresponding Source. The information must
|
|
||||||
suffice to ensure that the continued functioning of the modified object
|
|
||||||
code is in no case prevented or interfered with solely because
|
|
||||||
modification has been made.
|
|
||||||
|
|
||||||
If you convey an object code work under this section in, or with, or
|
|
||||||
specifically for use in, a User Product, and the conveying occurs as
|
|
||||||
part of a transaction in which the right of possession and use of the
|
|
||||||
User Product is transferred to the recipient in perpetuity or for a
|
|
||||||
fixed term (regardless of how the transaction is characterized), the
|
|
||||||
Corresponding Source conveyed under this section must be accompanied
|
|
||||||
by the Installation Information. But this requirement does not apply
|
|
||||||
if neither you nor any third party retains the ability to install
|
|
||||||
modified object code on the User Product (for example, the work has
|
|
||||||
been installed in ROM).
|
|
||||||
|
|
||||||
The requirement to provide Installation Information does not include a
|
|
||||||
requirement to continue to provide support service, warranty, or updates
|
|
||||||
for a work that has been modified or installed by the recipient, or for
|
|
||||||
the User Product in which it has been modified or installed. Access to a
|
|
||||||
network may be denied when the modification itself materially and
|
|
||||||
adversely affects the operation of the network or violates the rules and
|
|
||||||
protocols for communication across the network.
|
|
||||||
|
|
||||||
Corresponding Source conveyed, and Installation Information provided,
|
|
||||||
in accord with this section must be in a format that is publicly
|
|
||||||
documented (and with an implementation available to the public in
|
|
||||||
source code form), and must require no special password or key for
|
|
||||||
unpacking, reading or copying.
|
|
||||||
|
|
||||||
7. Additional Terms.
|
|
||||||
|
|
||||||
"Additional permissions" are terms that supplement the terms of this
|
|
||||||
License by making exceptions from one or more of its conditions.
|
|
||||||
Additional permissions that are applicable to the entire Program shall
|
|
||||||
be treated as though they were included in this License, to the extent
|
|
||||||
that they are valid under applicable law. If additional permissions
|
|
||||||
apply only to part of the Program, that part may be used separately
|
|
||||||
under those permissions, but the entire Program remains governed by
|
|
||||||
this License without regard to the additional permissions.
|
|
||||||
|
|
||||||
When you convey a copy of a covered work, you may at your option
|
|
||||||
remove any additional permissions from that copy, or from any part of
|
|
||||||
it. (Additional permissions may be written to require their own
|
|
||||||
removal in certain cases when you modify the work.) You may place
|
|
||||||
additional permissions on material, added by you to a covered work,
|
|
||||||
for which you have or can give appropriate copyright permission.
|
|
||||||
|
|
||||||
Notwithstanding any other provision of this License, for material you
|
|
||||||
add to a covered work, you may (if authorized by the copyright holders of
|
|
||||||
that material) supplement the terms of this License with terms:
|
|
||||||
|
|
||||||
a) Disclaiming warranty or limiting liability differently from the
|
|
||||||
terms of sections 15 and 16 of this License; or
|
|
||||||
|
|
||||||
b) Requiring preservation of specified reasonable legal notices or
|
|
||||||
author attributions in that material or in the Appropriate Legal
|
|
||||||
Notices displayed by works containing it; or
|
|
||||||
|
|
||||||
c) Prohibiting misrepresentation of the origin of that material, or
|
|
||||||
requiring that modified versions of such material be marked in
|
|
||||||
reasonable ways as different from the original version; or
|
|
||||||
|
|
||||||
d) Limiting the use for publicity purposes of names of licensors or
|
|
||||||
authors of the material; or
|
|
||||||
|
|
||||||
e) Declining to grant rights under trademark law for use of some
|
|
||||||
trade names, trademarks, or service marks; or
|
|
||||||
|
|
||||||
f) Requiring indemnification of licensors and authors of that
|
|
||||||
material by anyone who conveys the material (or modified versions of
|
|
||||||
it) with contractual assumptions of liability to the recipient, for
|
|
||||||
any liability that these contractual assumptions directly impose on
|
|
||||||
those licensors and authors.
|
|
||||||
|
|
||||||
All other non-permissive additional terms are considered "further
|
|
||||||
restrictions" within the meaning of section 10. If the Program as you
|
|
||||||
received it, or any part of it, contains a notice stating that it is
|
|
||||||
governed by this License along with a term that is a further
|
|
||||||
restriction, you may remove that term. If a license document contains
|
|
||||||
a further restriction but permits relicensing or conveying under this
|
|
||||||
License, you may add to a covered work material governed by the terms
|
|
||||||
of that license document, provided that the further restriction does
|
|
||||||
not survive such relicensing or conveying.
|
|
||||||
|
|
||||||
If you add terms to a covered work in accord with this section, you
|
|
||||||
must place, in the relevant source files, a statement of the
|
|
||||||
additional terms that apply to those files, or a notice indicating
|
|
||||||
where to find the applicable terms.
|
|
||||||
|
|
||||||
Additional terms, permissive or non-permissive, may be stated in the
|
|
||||||
form of a separately written license, or stated as exceptions;
|
|
||||||
the above requirements apply either way.
|
|
||||||
|
|
||||||
8. Termination.
|
|
||||||
|
|
||||||
You may not propagate or modify a covered work except as expressly
|
|
||||||
provided under this License. Any attempt otherwise to propagate or
|
|
||||||
modify it is void, and will automatically terminate your rights under
|
|
||||||
this License (including any patent licenses granted under the third
|
|
||||||
paragraph of section 11).
|
|
||||||
|
|
||||||
However, if you cease all violation of this License, then your
|
|
||||||
license from a particular copyright holder is reinstated (a)
|
|
||||||
provisionally, unless and until the copyright holder explicitly and
|
|
||||||
finally terminates your license, and (b) permanently, if the copyright
|
|
||||||
holder fails to notify you of the violation by some reasonable means
|
|
||||||
prior to 60 days after the cessation.
|
|
||||||
|
|
||||||
Moreover, your license from a particular copyright holder is
|
|
||||||
reinstated permanently if the copyright holder notifies you of the
|
|
||||||
violation by some reasonable means, this is the first time you have
|
|
||||||
received notice of violation of this License (for any work) from that
|
|
||||||
copyright holder, and you cure the violation prior to 30 days after
|
|
||||||
your receipt of the notice.
|
|
||||||
|
|
||||||
Termination of your rights under this section does not terminate the
|
|
||||||
licenses of parties who have received copies or rights from you under
|
|
||||||
this License. If your rights have been terminated and not permanently
|
|
||||||
reinstated, you do not qualify to receive new licenses for the same
|
|
||||||
material under section 10.
|
|
||||||
|
|
||||||
9. Acceptance Not Required for Having Copies.
|
|
||||||
|
|
||||||
You are not required to accept this License in order to receive or
|
|
||||||
run a copy of the Program. Ancillary propagation of a covered work
|
|
||||||
occurring solely as a consequence of using peer-to-peer transmission
|
|
||||||
to receive a copy likewise does not require acceptance. However,
|
|
||||||
nothing other than this License grants you permission to propagate or
|
|
||||||
modify any covered work. These actions infringe copyright if you do
|
|
||||||
not accept this License. Therefore, by modifying or propagating a
|
|
||||||
covered work, you indicate your acceptance of this License to do so.
|
|
||||||
|
|
||||||
10. Automatic Licensing of Downstream Recipients.
|
|
||||||
|
|
||||||
Each time you convey a covered work, the recipient automatically
|
|
||||||
receives a license from the original licensors, to run, modify and
|
|
||||||
propagate that work, subject to this License. You are not responsible
|
|
||||||
for enforcing compliance by third parties with this License.
|
|
||||||
|
|
||||||
An "entity transaction" is a transaction transferring control of an
|
|
||||||
organization, or substantially all assets of one, or subdividing an
|
|
||||||
organization, or merging organizations. If propagation of a covered
|
|
||||||
work results from an entity transaction, each party to that
|
|
||||||
transaction who receives a copy of the work also receives whatever
|
|
||||||
licenses to the work the party's predecessor in interest had or could
|
|
||||||
give under the previous paragraph, plus a right to possession of the
|
|
||||||
Corresponding Source of the work from the predecessor in interest, if
|
|
||||||
the predecessor has it or can get it with reasonable efforts.
|
|
||||||
|
|
||||||
You may not impose any further restrictions on the exercise of the
|
|
||||||
rights granted or affirmed under this License. For example, you may
|
|
||||||
not impose a license fee, royalty, or other charge for exercise of
|
|
||||||
rights granted under this License, and you may not initiate litigation
|
|
||||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
|
||||||
any patent claim is infringed by making, using, selling, offering for
|
|
||||||
sale, or importing the Program or any portion of it.
|
|
||||||
|
|
||||||
11. Patents.
|
|
||||||
|
|
||||||
A "contributor" is a copyright holder who authorizes use under this
|
|
||||||
License of the Program or a work on which the Program is based. The
|
|
||||||
work thus licensed is called the contributor's "contributor version".
|
|
||||||
|
|
||||||
A contributor's "essential patent claims" are all patent claims
|
|
||||||
owned or controlled by the contributor, whether already acquired or
|
|
||||||
hereafter acquired, that would be infringed by some manner, permitted
|
|
||||||
by this License, of making, using, or selling its contributor version,
|
|
||||||
but do not include claims that would be infringed only as a
|
|
||||||
consequence of further modification of the contributor version. For
|
|
||||||
purposes of this definition, "control" includes the right to grant
|
|
||||||
patent sublicenses in a manner consistent with the requirements of
|
|
||||||
this License.
|
|
||||||
|
|
||||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
|
||||||
patent license under the contributor's essential patent claims, to
|
|
||||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
|
||||||
propagate the contents of its contributor version.
|
|
||||||
|
|
||||||
In the following three paragraphs, a "patent license" is any express
|
|
||||||
agreement or commitment, however denominated, not to enforce a patent
|
|
||||||
(such as an express permission to practice a patent or covenant not to
|
|
||||||
sue for patent infringement). To "grant" such a patent license to a
|
|
||||||
party means to make such an agreement or commitment not to enforce a
|
|
||||||
patent against the party.
|
|
||||||
|
|
||||||
If you convey a covered work, knowingly relying on a patent license,
|
|
||||||
and the Corresponding Source of the work is not available for anyone
|
|
||||||
to copy, free of charge and under the terms of this License, through a
|
|
||||||
publicly available network server or other readily accessible means,
|
|
||||||
then you must either (1) cause the Corresponding Source to be so
|
|
||||||
available, or (2) arrange to deprive yourself of the benefit of the
|
|
||||||
patent license for this particular work, or (3) arrange, in a manner
|
|
||||||
consistent with the requirements of this License, to extend the patent
|
|
||||||
license to downstream recipients. "Knowingly relying" means you have
|
|
||||||
actual knowledge that, but for the patent license, your conveying the
|
|
||||||
covered work in a country, or your recipient's use of the covered work
|
|
||||||
in a country, would infringe one or more identifiable patents in that
|
|
||||||
country that you have reason to believe are valid.
|
|
||||||
|
|
||||||
If, pursuant to or in connection with a single transaction or
|
|
||||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
|
||||||
covered work, and grant a patent license to some of the parties
|
|
||||||
receiving the covered work authorizing them to use, propagate, modify
|
|
||||||
or convey a specific copy of the covered work, then the patent license
|
|
||||||
you grant is automatically extended to all recipients of the covered
|
|
||||||
work and works based on it.
|
|
||||||
|
|
||||||
A patent license is "discriminatory" if it does not include within
|
|
||||||
the scope of its coverage, prohibits the exercise of, or is
|
|
||||||
conditioned on the non-exercise of one or more of the rights that are
|
|
||||||
specifically granted under this License. You may not convey a covered
|
|
||||||
work if you are a party to an arrangement with a third party that is
|
|
||||||
in the business of distributing software, under which you make payment
|
|
||||||
to the third party based on the extent of your activity of conveying
|
|
||||||
the work, and under which the third party grants, to any of the
|
|
||||||
parties who would receive the covered work from you, a discriminatory
|
|
||||||
patent license (a) in connection with copies of the covered work
|
|
||||||
conveyed by you (or copies made from those copies), or (b) primarily
|
|
||||||
for and in connection with specific products or compilations that
|
|
||||||
contain the covered work, unless you entered into that arrangement,
|
|
||||||
or that patent license was granted, prior to 28 March 2007.
|
|
||||||
|
|
||||||
Nothing in this License shall be construed as excluding or limiting
|
|
||||||
any implied license or other defenses to infringement that may
|
|
||||||
otherwise be available to you under applicable patent law.
|
|
||||||
|
|
||||||
12. No Surrender of Others' Freedom.
|
|
||||||
|
|
||||||
If conditions are imposed on you (whether by court order, agreement or
|
|
||||||
otherwise) that contradict the conditions of this License, they do not
|
|
||||||
excuse you from the conditions of this License. If you cannot convey a
|
|
||||||
covered work so as to satisfy simultaneously your obligations under this
|
|
||||||
License and any other pertinent obligations, then as a consequence you may
|
|
||||||
not convey it at all. For example, if you agree to terms that obligate you
|
|
||||||
to collect a royalty for further conveying from those to whom you convey
|
|
||||||
the Program, the only way you could satisfy both those terms and this
|
|
||||||
License would be to refrain entirely from conveying the Program.
|
|
||||||
|
|
||||||
13. Use with the GNU Affero General Public License.
|
|
||||||
|
|
||||||
Notwithstanding any other provision of this License, you have
|
|
||||||
permission to link or combine any covered work with a work licensed
|
|
||||||
under version 3 of the GNU Affero General Public License into a single
|
|
||||||
combined work, and to convey the resulting work. The terms of this
|
|
||||||
License will continue to apply to the part which is the covered work,
|
|
||||||
but the special requirements of the GNU Affero General Public License,
|
|
||||||
section 13, concerning interaction through a network will apply to the
|
|
||||||
combination as such.
|
|
||||||
|
|
||||||
14. Revised Versions of this License.
|
|
||||||
|
|
||||||
The Free Software Foundation may publish revised and/or new versions of
|
|
||||||
the GNU General Public License from time to time. Such new versions will
|
|
||||||
be similar in spirit to the present version, but may differ in detail to
|
|
||||||
address new problems or concerns.
|
|
||||||
|
|
||||||
Each version is given a distinguishing version number. If the
|
|
||||||
Program specifies that a certain numbered version of the GNU General
|
|
||||||
Public License "or any later version" applies to it, you have the
|
|
||||||
option of following the terms and conditions either of that numbered
|
|
||||||
version or of any later version published by the Free Software
|
|
||||||
Foundation. If the Program does not specify a version number of the
|
|
||||||
GNU General Public License, you may choose any version ever published
|
|
||||||
by the Free Software Foundation.
|
|
||||||
|
|
||||||
If the Program specifies that a proxy can decide which future
|
|
||||||
versions of the GNU General Public License can be used, that proxy's
|
|
||||||
public statement of acceptance of a version permanently authorizes you
|
|
||||||
to choose that version for the Program.
|
|
||||||
|
|
||||||
Later license versions may give you additional or different
|
|
||||||
permissions. However, no additional obligations are imposed on any
|
|
||||||
author or copyright holder as a result of your choosing to follow a
|
|
||||||
later version.
|
|
||||||
|
|
||||||
15. Disclaimer of Warranty.
|
|
||||||
|
|
||||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
|
||||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
|
||||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
|
||||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
|
||||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
||||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
|
||||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
|
||||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
|
||||||
|
|
||||||
16. Limitation of Liability.
|
|
||||||
|
|
||||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
|
||||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
|
||||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
|
||||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
|
||||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
|
||||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
|
||||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
|
||||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
|
||||||
SUCH DAMAGES.
|
|
||||||
|
|
||||||
17. Interpretation of Sections 15 and 16.
|
|
||||||
|
|
||||||
If the disclaimer of warranty and limitation of liability provided
|
|
||||||
above cannot be given local legal effect according to their terms,
|
|
||||||
reviewing courts shall apply local law that most closely approximates
|
|
||||||
an absolute waiver of all civil liability in connection with the
|
|
||||||
Program, unless a warranty or assumption of liability accompanies a
|
|
||||||
copy of the Program in return for a fee.
|
|
||||||
|
|
||||||
END OF TERMS AND CONDITIONS
|
|
||||||
|
|
||||||
How to Apply These Terms to Your New Programs
|
|
||||||
|
|
||||||
If you develop a new program, and you want it to be of the greatest
|
|
||||||
possible use to the public, the best way to achieve this is to make it
|
|
||||||
free software which everyone can redistribute and change under these terms.
|
|
||||||
|
|
||||||
To do so, attach the following notices to the program. It is safest
|
|
||||||
to attach them to the start of each source file to most effectively
|
|
||||||
state the exclusion of warranty; and each file should have at least
|
|
||||||
the "copyright" line and a pointer to where the full notice is found.
|
|
||||||
|
|
||||||
<one line to give the program's name and a brief idea of what it does.>
|
|
||||||
Copyright (C) <year> <name of author>
|
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
Also add information on how to contact you by electronic and paper mail.
|
|
||||||
|
|
||||||
If the program does terminal interaction, make it output a short
|
|
||||||
notice like this when it starts in an interactive mode:
|
|
||||||
|
|
||||||
<program> Copyright (C) <year> <name of author>
|
|
||||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
|
||||||
This is free software, and you are welcome to redistribute it
|
|
||||||
under certain conditions; type `show c' for details.
|
|
||||||
|
|
||||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
|
||||||
parts of the General Public License. Of course, your program's commands
|
|
||||||
might be different; for a GUI interface, you would use an "about box".
|
|
||||||
|
|
||||||
You should also get your employer (if you work as a programmer) or school,
|
|
||||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
|
||||||
For more information on this, and how to apply and follow the GNU GPL, see
|
|
||||||
<http://www.gnu.org/licenses/>.
|
|
||||||
|
|
||||||
The GNU General Public License does not permit incorporating your program
|
|
||||||
into proprietary programs. If your program is a subroutine library, you
|
|
||||||
may consider it more useful to permit linking proprietary applications with
|
|
||||||
the library. If this is what you want to do, use the GNU Lesser General
|
|
||||||
Public License instead of this License. But first, please read
|
|
||||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
|
197
README.md
197
README.md
|
@ -1,197 +0,0 @@
|
||||||
<table style="width:100%">
|
|
||||||
<tr>
|
|
||||||
<td>
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/61591130-f7beea00-abc2-11e9-9dc0-d6abcf41d713.jpg">
|
|
||||||
</td>
|
|
||||||
<td align="center">
|
|
||||||
<a href="https://www.ultralytics.com" target="_blank">
|
|
||||||
<img src="https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width="160"></a>
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/61591093-2b4d4480-abc2-11e9-8b46-d88eb1dabba1.jpg">
|
|
||||||
<a href="https://itunes.apple.com/app/id1452689527" target="_blank">
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width="180"></a>
|
|
||||||
</td>
|
|
||||||
<td>
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/61591100-55066b80-abc2-11e9-9647-52c0e045b288.jpg">
|
|
||||||
</td>
|
|
||||||
</tr>
|
|
||||||
</table>
|
|
||||||
|
|
||||||
|
|
||||||
## Introduction
|
|
||||||
|
|
||||||
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.
|
|
||||||
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
|
|
||||||
Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
|
|
||||||
```bash
|
|
||||||
$ pip install -U -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Tutorials
|
|
||||||
|
|
||||||
* <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
||||||
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) < highly recommended!!
|
|
||||||
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
|
|
||||||
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)
|
|
||||||
* [A TensorRT Implementation of YOLOv3 and YOLOv4](https://github.com/wang-xinyu/tensorrtx/tree/master/yolov3-spp)
|
|
||||||
|
|
||||||
|
|
||||||
## Training
|
|
||||||
|
|
||||||
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco2017.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
|
|
||||||
|
|
||||||
**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`.
|
|
||||||
|
|
||||||
**Plot Training:** `from utils import utils; utils.plot_results()`
|
|
||||||
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/78175826-599d4800-7410-11ea-87d4-f629071838f6.png" width="900">
|
|
||||||
|
|
||||||
|
|
||||||
### Image Augmentation
|
|
||||||
|
|
||||||
`datasets.py` applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a **mosaic dataloader** to increase image variability during training.
|
|
||||||
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/80769557-6e015d00-8b02-11ea-9c4b-69310eb2b962.jpg" width="900">
|
|
||||||
|
|
||||||
|
|
||||||
### Speed
|
|
||||||
|
|
||||||
https://cloud.google.com/deep-learning-vm/
|
|
||||||
**Machine type:** preemptible [n1-standard-8](https://cloud.google.com/compute/docs/machine-types) (8 vCPUs, 30 GB memory)
|
|
||||||
**CPU platform:** Intel Skylake
|
|
||||||
**GPUs:** K80 ($0.14/hr), T4 ($0.11/hr), V100 ($0.74/hr) CUDA with [Nvidia Apex](https://github.com/NVIDIA/apex) FP16/32
|
|
||||||
**HDD:** 300 GB SSD
|
|
||||||
**Dataset:** COCO train 2014 (117,263 images)
|
|
||||||
**Model:** `yolov3-spp.cfg`
|
|
||||||
**Command:** `python3 train.py --data coco2017.data --img 416 --batch 32`
|
|
||||||
|
|
||||||
GPU | n | `--batch-size` | img/s | epoch<br>time | epoch<br>cost
|
|
||||||
--- |--- |--- |--- |--- |---
|
|
||||||
K80 |1| 32 x 2 | 11 | 175 min | $0.41
|
|
||||||
T4 |1<br>2| 32 x 2<br>64 x 1 | 41<br>61 | 48 min<br>32 min | $0.09<br>$0.11
|
|
||||||
V100 |1<br>2| 32 x 2<br>64 x 1 | 122<br>**178** | 16 min<br>**11 min** | **$0.21**<br>$0.28
|
|
||||||
2080Ti |1<br>2| 32 x 2<br>64 x 1 | 81<br>140 | 24 min<br>14 min | -<br>-
|
|
||||||
|
|
||||||
|
|
||||||
## Inference
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python3 detect.py --source ...
|
|
||||||
```
|
|
||||||
|
|
||||||
- Image: `--source file.jpg`
|
|
||||||
- Video: `--source file.mp4`
|
|
||||||
- Directory: `--source dir/`
|
|
||||||
- Webcam: `--source 0`
|
|
||||||
- RTSP stream: `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa`
|
|
||||||
- HTTP stream: `--source http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8`
|
|
||||||
|
|
||||||
**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt`
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width="500">
|
|
||||||
|
|
||||||
**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt`
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width="500">
|
|
||||||
|
|
||||||
**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt`
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width="500">
|
|
||||||
|
|
||||||
|
|
||||||
## Pretrained Checkpoints
|
|
||||||
|
|
||||||
Download from: [https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0](https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0)
|
|
||||||
|
|
||||||
|
|
||||||
## Darknet Conversion
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ git clone https://github.com/ultralytics/yolov3 && cd yolov3
|
|
||||||
|
|
||||||
# convert darknet cfg/weights to pytorch model
|
|
||||||
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
|
|
||||||
Success: converted 'weights/yolov3-spp.weights' to 'weights/yolov3-spp.pt'
|
|
||||||
|
|
||||||
# convert cfg/pytorch model to darknet weights
|
|
||||||
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
|
|
||||||
Success: converted 'weights/yolov3-spp.pt' to 'weights/yolov3-spp.weights'
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## mAP
|
|
||||||
|
|
||||||
<i></i> |Size |COCO mAP<br>@0.5...0.95 |COCO mAP<br>@0.5
|
|
||||||
--- | --- | --- | ---
|
|
||||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0<br>28.7<br>30.5<br>**37.7** |29.1<br>51.8<br>52.3<br>**56.8**
|
|
||||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0<br>31.2<br>33.9<br>**41.2** |33.0<br>55.4<br>56.9<br>**60.6**
|
|
||||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6<br>32.7<br>35.6<br>**42.6** |34.9<br>57.7<br>59.5<br>**62.4**
|
|
||||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6<br>33.1<br>37.0<br>**43.1** |35.4<br>58.2<br>60.7<br>**62.8**
|
|
||||||
|
|
||||||
- mAP@0.5 run at `--iou-thr 0.5`, mAP@0.5...0.95 run at `--iou-thr 0.7`
|
|
||||||
- Darknet results: https://arxiv.org/abs/1804.02767
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment
|
|
||||||
|
|
||||||
Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
|
|
||||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
|
||||||
|
|
||||||
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
|
|
||||||
all 5e+03 3.51e+04 0.375 0.743 0.64 0.492
|
|
||||||
|
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.456
|
|
||||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.647
|
|
||||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.496
|
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
|
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
|
|
||||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.361
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.597
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.666
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.492
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
|
|
||||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810
|
|
||||||
|
|
||||||
Speed: 17.5/2.3/19.9 ms inference/NMS/total per 640x640 image at batch-size 16
|
|
||||||
```
|
|
||||||
<!-- Speed: 11.4/2.2/13.6 ms inference/NMS/total per 608x608 image at batch-size 1 -->
|
|
||||||
|
|
||||||
|
|
||||||
## Reproduce Our Results
|
|
||||||
|
|
||||||
Run commands below. Training takes about one week on a 2080Ti per model.
|
|
||||||
```bash
|
|
||||||
$ python train.py --data coco2014.data --weights '' --batch-size 16 --cfg yolov3-spp.cfg
|
|
||||||
$ python train.py --data coco2014.data --weights '' --batch-size 32 --cfg yolov3-tiny.cfg
|
|
||||||
```
|
|
||||||
<img src="https://user-images.githubusercontent.com/26833433/80831822-57a9de80-8ba0-11ea-9684-c47afb0432dc.png" width="900">
|
|
||||||
|
|
||||||
|
|
||||||
## Reproduce Our Environment
|
|
||||||
|
|
||||||
To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
|
|
||||||
|
|
||||||
- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
|
|
||||||
- **Google Colab Notebook** with 12 hours of free GPU time. <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
||||||
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker)
|
|
||||||
|
|
||||||
|
|
||||||
## Citation
|
|
||||||
|
|
||||||
[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
|
|
||||||
|
|
||||||
|
|
||||||
## About Us
|
|
||||||
|
|
||||||
Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
|
|
||||||
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
|
|
||||||
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
|
|
||||||
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.
|
|
||||||
|
|
||||||
For business inquiries and professional support requests please visit us at https://www.ultralytics.com.
|
|
||||||
|
|
||||||
|
|
||||||
## Contact
|
|
||||||
|
|
||||||
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|
|
1033
cfg/cd53s-yolov3.cfg
1033
cfg/cd53s-yolov3.cfg
File diff suppressed because it is too large
Load Diff
1155
cfg/cd53s.cfg
1155
cfg/cd53s.cfg
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -1,788 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
#batch=1
|
|
||||||
#subdivisions=1
|
|
||||||
# Training
|
|
||||||
batch=16
|
|
||||||
subdivisions=1
|
|
||||||
width=416
|
|
||||||
height=416
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
######################
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 6,7,8
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 61
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 36
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,804 +0,0 @@
|
||||||
# Generated by Glenn Jocher (glenn.jocher@ultralytics.com) for https://github.com/ultralytics/yolov3
|
|
||||||
# def kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 640)): # from utils.utils import *; kmean_anchors()
|
|
||||||
# Evolving anchors: 100%|██████████| 1000/1000 [41:15<00:00, 2.48s/it]
|
|
||||||
# 0.20 iou_thr: 0.992 best possible recall, 4.25 anchors > thr
|
|
||||||
# kmeans anchors (n=12, img_size=(320, 640), IoU=0.005/0.184/0.634-min/mean/best): 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359
|
|
||||||
|
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
# batch=1
|
|
||||||
# subdivisions=1
|
|
||||||
# Training
|
|
||||||
batch=64
|
|
||||||
subdivisions=16
|
|
||||||
width=608
|
|
||||||
height=608
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
######################
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
# SPP --------------------------------------------------------------------------
|
|
||||||
[maxpool]
|
|
||||||
stride=1
|
|
||||||
size=5
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers=-2
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
stride=1
|
|
||||||
size=9
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers=-4
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
stride=1
|
|
||||||
size=13
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers=-1,-3,-5,-6
|
|
||||||
# SPP --------------------------------------------------------------------------
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=258
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# YOLO -------------------------------------------------------------------------
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -3
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 61
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=258
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# YOLO -------------------------------------------------------------------------
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -3
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 36
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=258
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
from=88,99,110
|
|
||||||
mask = 6,7,8
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
from=88,99,110
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
from=88,99,110
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
|
@ -16,10 +16,10 @@ exposure = 1.5
|
||||||
hue=.1
|
hue=.1
|
||||||
|
|
||||||
learning_rate=0.001
|
learning_rate=0.001
|
||||||
burn_in=100
|
burn_in=1000
|
||||||
max_batches = 5000
|
max_batches = 500200
|
||||||
policy=steps
|
policy=steps
|
||||||
steps=4000,4500
|
steps=400000,450000
|
||||||
scales=.1,.1
|
scales=.1,.1
|
||||||
|
|
||||||
[convolutional]
|
[convolutional]
|
||||||
|
@ -633,14 +633,14 @@ activation=leaky
|
||||||
size=1
|
size=1
|
||||||
stride=1
|
stride=1
|
||||||
pad=1
|
pad=1
|
||||||
filters=18
|
filters=69
|
||||||
activation=linear
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
[yolo]
|
||||||
mask = 6,7,8
|
mask = 6,7,8
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
|
||||||
classes=1
|
classes=18
|
||||||
num=9
|
num=9
|
||||||
jitter=.3
|
jitter=.3
|
||||||
ignore_thresh = .7
|
ignore_thresh = .7
|
||||||
|
@ -719,14 +719,14 @@ activation=leaky
|
||||||
size=1
|
size=1
|
||||||
stride=1
|
stride=1
|
||||||
pad=1
|
pad=1
|
||||||
filters=18
|
filters=69
|
||||||
activation=linear
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
[yolo]
|
||||||
mask = 3,4,5
|
mask = 3,4,5
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
|
||||||
classes=1
|
classes=18
|
||||||
num=9
|
num=9
|
||||||
jitter=.3
|
jitter=.3
|
||||||
ignore_thresh = .7
|
ignore_thresh = .7
|
||||||
|
@ -806,14 +806,14 @@ activation=leaky
|
||||||
size=1
|
size=1
|
||||||
stride=1
|
stride=1
|
||||||
pad=1
|
pad=1
|
||||||
filters=18
|
filters=69
|
||||||
activation=linear
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
[yolo]
|
||||||
mask = 0,1,2
|
mask = 0,1,2
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
|
||||||
classes=1
|
classes=18
|
||||||
num=9
|
num=9
|
||||||
jitter=.3
|
jitter=.3
|
||||||
ignore_thresh = .7
|
ignore_thresh = .7
|
|
@ -1,182 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
batch=1
|
|
||||||
subdivisions=1
|
|
||||||
# Training
|
|
||||||
# batch=64
|
|
||||||
# subdivisions=2
|
|
||||||
width=416
|
|
||||||
height=416
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=16
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
###########
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=1
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 8
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=1
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,182 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
batch=1
|
|
||||||
subdivisions=1
|
|
||||||
# Training
|
|
||||||
# batch=64
|
|
||||||
# subdivisions=2
|
|
||||||
width=416
|
|
||||||
height=416
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=16
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
###########
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=24
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=3
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 8
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=24
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=3
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,182 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
batch=1
|
|
||||||
subdivisions=1
|
|
||||||
# Training
|
|
||||||
# batch=64
|
|
||||||
# subdivisions=2
|
|
||||||
width=416
|
|
||||||
height=416
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=16
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
###########
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=80
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 8
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 1,2,3
|
|
||||||
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
|
||||||
classes=80
|
|
||||||
num=6
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,227 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
# batch=1
|
|
||||||
# subdivisions=1
|
|
||||||
# Training
|
|
||||||
batch=64
|
|
||||||
subdivisions=16
|
|
||||||
width=608
|
|
||||||
height=608
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 200000
|
|
||||||
policy=steps
|
|
||||||
steps=180000,190000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=16
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
###########
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 6,7,8
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 8
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -3
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 6
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=18
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=1
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,227 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
# batch=1
|
|
||||||
# subdivisions=1
|
|
||||||
# Training
|
|
||||||
batch=64
|
|
||||||
subdivisions=16
|
|
||||||
width=608
|
|
||||||
height=608
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 200000
|
|
||||||
policy=steps
|
|
||||||
steps=180000,190000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=16
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[maxpool]
|
|
||||||
size=2
|
|
||||||
stride=1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
###########
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 6,7,8
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 8
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -3
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 6
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
788
cfg/yolov3.cfg
788
cfg/yolov3.cfg
|
@ -1,788 +0,0 @@
|
||||||
[net]
|
|
||||||
# Testing
|
|
||||||
#batch=1
|
|
||||||
#subdivisions=1
|
|
||||||
# Training
|
|
||||||
batch=16
|
|
||||||
subdivisions=1
|
|
||||||
width=416
|
|
||||||
height=416
|
|
||||||
channels=3
|
|
||||||
momentum=0.9
|
|
||||||
decay=0.0005
|
|
||||||
angle=0
|
|
||||||
saturation = 1.5
|
|
||||||
exposure = 1.5
|
|
||||||
hue=.1
|
|
||||||
|
|
||||||
learning_rate=0.001
|
|
||||||
burn_in=1000
|
|
||||||
max_batches = 500200
|
|
||||||
policy=steps
|
|
||||||
steps=400000,450000
|
|
||||||
scales=.1,.1
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=32
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=64
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
# Downsample
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=2
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=1024
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[shortcut]
|
|
||||||
from=-3
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
######################
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=512
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=1024
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 6,7,8
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 61
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=256
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=512
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 3,4,5
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -4
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[upsample]
|
|
||||||
stride=2
|
|
||||||
|
|
||||||
[route]
|
|
||||||
layers = -1, 36
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
filters=128
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
batch_normalize=1
|
|
||||||
size=3
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=256
|
|
||||||
activation=leaky
|
|
||||||
|
|
||||||
[convolutional]
|
|
||||||
size=1
|
|
||||||
stride=1
|
|
||||||
pad=1
|
|
||||||
filters=255
|
|
||||||
activation=linear
|
|
||||||
|
|
||||||
|
|
||||||
[yolo]
|
|
||||||
mask = 0,1,2
|
|
||||||
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
|
||||||
classes=80
|
|
||||||
num=9
|
|
||||||
jitter=.3
|
|
||||||
ignore_thresh = .7
|
|
||||||
truth_thresh = 1
|
|
||||||
random=1
|
|
|
@ -1,80 +0,0 @@
|
||||||
person
|
|
||||||
bicycle
|
|
||||||
car
|
|
||||||
motorcycle
|
|
||||||
airplane
|
|
||||||
bus
|
|
||||||
train
|
|
||||||
truck
|
|
||||||
boat
|
|
||||||
traffic light
|
|
||||||
fire hydrant
|
|
||||||
stop sign
|
|
||||||
parking meter
|
|
||||||
bench
|
|
||||||
bird
|
|
||||||
cat
|
|
||||||
dog
|
|
||||||
horse
|
|
||||||
sheep
|
|
||||||
cow
|
|
||||||
elephant
|
|
||||||
bear
|
|
||||||
zebra
|
|
||||||
giraffe
|
|
||||||
backpack
|
|
||||||
umbrella
|
|
||||||
handbag
|
|
||||||
tie
|
|
||||||
suitcase
|
|
||||||
frisbee
|
|
||||||
skis
|
|
||||||
snowboard
|
|
||||||
sports ball
|
|
||||||
kite
|
|
||||||
baseball bat
|
|
||||||
baseball glove
|
|
||||||
skateboard
|
|
||||||
surfboard
|
|
||||||
tennis racket
|
|
||||||
bottle
|
|
||||||
wine glass
|
|
||||||
cup
|
|
||||||
fork
|
|
||||||
knife
|
|
||||||
spoon
|
|
||||||
bowl
|
|
||||||
banana
|
|
||||||
apple
|
|
||||||
sandwich
|
|
||||||
orange
|
|
||||||
broccoli
|
|
||||||
carrot
|
|
||||||
hot dog
|
|
||||||
pizza
|
|
||||||
donut
|
|
||||||
cake
|
|
||||||
chair
|
|
||||||
couch
|
|
||||||
potted plant
|
|
||||||
bed
|
|
||||||
dining table
|
|
||||||
toilet
|
|
||||||
tv
|
|
||||||
laptop
|
|
||||||
mouse
|
|
||||||
remote
|
|
||||||
keyboard
|
|
||||||
cell phone
|
|
||||||
microwave
|
|
||||||
oven
|
|
||||||
toaster
|
|
||||||
sink
|
|
||||||
refrigerator
|
|
||||||
book
|
|
||||||
clock
|
|
||||||
vase
|
|
||||||
scissors
|
|
||||||
teddy bear
|
|
||||||
hair drier
|
|
||||||
toothbrush
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=80
|
|
||||||
train=data/coco1.txt
|
|
||||||
valid=data/coco1.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1 +0,0 @@
|
||||||
../coco/images/train2017/000000109622.jpg
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=80
|
|
||||||
train=data/coco16.txt
|
|
||||||
valid=data/coco16.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1,16 +0,0 @@
|
||||||
../coco/images/train2017/000000109622.jpg
|
|
||||||
../coco/images/train2017/000000160694.jpg
|
|
||||||
../coco/images/train2017/000000308590.jpg
|
|
||||||
../coco/images/train2017/000000327573.jpg
|
|
||||||
../coco/images/train2017/000000062929.jpg
|
|
||||||
../coco/images/train2017/000000512793.jpg
|
|
||||||
../coco/images/train2017/000000371735.jpg
|
|
||||||
../coco/images/train2017/000000148118.jpg
|
|
||||||
../coco/images/train2017/000000309856.jpg
|
|
||||||
../coco/images/train2017/000000141882.jpg
|
|
||||||
../coco/images/train2017/000000318783.jpg
|
|
||||||
../coco/images/train2017/000000337760.jpg
|
|
||||||
../coco/images/train2017/000000298197.jpg
|
|
||||||
../coco/images/train2017/000000042421.jpg
|
|
||||||
../coco/images/train2017/000000328898.jpg
|
|
||||||
../coco/images/train2017/000000458856.jpg
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=1
|
|
||||||
train=data/coco1cls.txt
|
|
||||||
valid=data/coco1cls.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1,16 +0,0 @@
|
||||||
../coco/images/train2017/000000000901.jpg
|
|
||||||
../coco/images/train2017/000000001464.jpg
|
|
||||||
../coco/images/train2017/000000003220.jpg
|
|
||||||
../coco/images/train2017/000000003365.jpg
|
|
||||||
../coco/images/train2017/000000004772.jpg
|
|
||||||
../coco/images/train2017/000000009987.jpg
|
|
||||||
../coco/images/train2017/000000010498.jpg
|
|
||||||
../coco/images/train2017/000000012455.jpg
|
|
||||||
../coco/images/train2017/000000013992.jpg
|
|
||||||
../coco/images/train2017/000000014125.jpg
|
|
||||||
../coco/images/train2017/000000016314.jpg
|
|
||||||
../coco/images/train2017/000000016670.jpg
|
|
||||||
../coco/images/train2017/000000018412.jpg
|
|
||||||
../coco/images/train2017/000000021212.jpg
|
|
||||||
../coco/images/train2017/000000021826.jpg
|
|
||||||
../coco/images/train2017/000000030566.jpg
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=80
|
|
||||||
train=../coco/trainvalno5k.txt
|
|
||||||
valid=../coco/5k.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=80
|
|
||||||
train=../coco/train2017.txt
|
|
||||||
valid=../coco/val2017.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1,4 +0,0 @@
|
||||||
classes=80
|
|
||||||
train=data/coco64.txt
|
|
||||||
valid=data/coco64.txt
|
|
||||||
names=data/coco.names
|
|
|
@ -1,64 +0,0 @@
|
||||||
../coco/images/train2017/000000109622.jpg
|
|
||||||
../coco/images/train2017/000000160694.jpg
|
|
||||||
../coco/images/train2017/000000308590.jpg
|
|
||||||
../coco/images/train2017/000000327573.jpg
|
|
||||||
../coco/images/train2017/000000062929.jpg
|
|
||||||
../coco/images/train2017/000000512793.jpg
|
|
||||||
../coco/images/train2017/000000371735.jpg
|
|
||||||
../coco/images/train2017/000000148118.jpg
|
|
||||||
../coco/images/train2017/000000309856.jpg
|
|
||||||
../coco/images/train2017/000000141882.jpg
|
|
||||||
../coco/images/train2017/000000318783.jpg
|
|
||||||
../coco/images/train2017/000000337760.jpg
|
|
||||||
../coco/images/train2017/000000298197.jpg
|
|
||||||
../coco/images/train2017/000000042421.jpg
|
|
||||||
../coco/images/train2017/000000328898.jpg
|
|
||||||
../coco/images/train2017/000000458856.jpg
|
|
||||||
../coco/images/train2017/000000073824.jpg
|
|
||||||
../coco/images/train2017/000000252846.jpg
|
|
||||||
../coco/images/train2017/000000459590.jpg
|
|
||||||
../coco/images/train2017/000000273650.jpg
|
|
||||||
../coco/images/train2017/000000331311.jpg
|
|
||||||
../coco/images/train2017/000000156326.jpg
|
|
||||||
../coco/images/train2017/000000262985.jpg
|
|
||||||
../coco/images/train2017/000000253580.jpg
|
|
||||||
../coco/images/train2017/000000447976.jpg
|
|
||||||
../coco/images/train2017/000000378077.jpg
|
|
||||||
../coco/images/train2017/000000259913.jpg
|
|
||||||
../coco/images/train2017/000000424553.jpg
|
|
||||||
../coco/images/train2017/000000000612.jpg
|
|
||||||
../coco/images/train2017/000000267625.jpg
|
|
||||||
../coco/images/train2017/000000566012.jpg
|
|
||||||
../coco/images/train2017/000000196664.jpg
|
|
||||||
../coco/images/train2017/000000363331.jpg
|
|
||||||
../coco/images/train2017/000000057992.jpg
|
|
||||||
../coco/images/train2017/000000520047.jpg
|
|
||||||
../coco/images/train2017/000000453903.jpg
|
|
||||||
../coco/images/train2017/000000162083.jpg
|
|
||||||
../coco/images/train2017/000000268516.jpg
|
|
||||||
../coco/images/train2017/000000277436.jpg
|
|
||||||
../coco/images/train2017/000000189744.jpg
|
|
||||||
../coco/images/train2017/000000041128.jpg
|
|
||||||
../coco/images/train2017/000000527728.jpg
|
|
||||||
../coco/images/train2017/000000465269.jpg
|
|
||||||
../coco/images/train2017/000000246833.jpg
|
|
||||||
../coco/images/train2017/000000076784.jpg
|
|
||||||
../coco/images/train2017/000000323715.jpg
|
|
||||||
../coco/images/train2017/000000560463.jpg
|
|
||||||
../coco/images/train2017/000000006263.jpg
|
|
||||||
../coco/images/train2017/000000094701.jpg
|
|
||||||
../coco/images/train2017/000000521359.jpg
|
|
||||||
../coco/images/train2017/000000302903.jpg
|
|
||||||
../coco/images/train2017/000000047559.jpg
|
|
||||||
../coco/images/train2017/000000480583.jpg
|
|
||||||
../coco/images/train2017/000000050025.jpg
|
|
||||||
../coco/images/train2017/000000084512.jpg
|
|
||||||
../coco/images/train2017/000000508913.jpg
|
|
||||||
../coco/images/train2017/000000093708.jpg
|
|
||||||
../coco/images/train2017/000000070493.jpg
|
|
||||||
../coco/images/train2017/000000539270.jpg
|
|
||||||
../coco/images/train2017/000000474402.jpg
|
|
||||||
../coco/images/train2017/000000209842.jpg
|
|
||||||
../coco/images/train2017/000000028820.jpg
|
|
||||||
../coco/images/train2017/000000154257.jpg
|
|
||||||
../coco/images/train2017/000000342499.jpg
|
|
|
@ -1,91 +0,0 @@
|
||||||
person
|
|
||||||
bicycle
|
|
||||||
car
|
|
||||||
motorcycle
|
|
||||||
airplane
|
|
||||||
bus
|
|
||||||
train
|
|
||||||
truck
|
|
||||||
boat
|
|
||||||
traffic light
|
|
||||||
fire hydrant
|
|
||||||
street sign
|
|
||||||
stop sign
|
|
||||||
parking meter
|
|
||||||
bench
|
|
||||||
bird
|
|
||||||
cat
|
|
||||||
dog
|
|
||||||
horse
|
|
||||||
sheep
|
|
||||||
cow
|
|
||||||
elephant
|
|
||||||
bear
|
|
||||||
zebra
|
|
||||||
giraffe
|
|
||||||
hat
|
|
||||||
backpack
|
|
||||||
umbrella
|
|
||||||
shoe
|
|
||||||
eye glasses
|
|
||||||
handbag
|
|
||||||
tie
|
|
||||||
suitcase
|
|
||||||
frisbee
|
|
||||||
skis
|
|
||||||
snowboard
|
|
||||||
sports ball
|
|
||||||
kite
|
|
||||||
baseball bat
|
|
||||||
baseball glove
|
|
||||||
skateboard
|
|
||||||
surfboard
|
|
||||||
tennis racket
|
|
||||||
bottle
|
|
||||||
plate
|
|
||||||
wine glass
|
|
||||||
cup
|
|
||||||
fork
|
|
||||||
knife
|
|
||||||
spoon
|
|
||||||
bowl
|
|
||||||
banana
|
|
||||||
apple
|
|
||||||
sandwich
|
|
||||||
orange
|
|
||||||
broccoli
|
|
||||||
carrot
|
|
||||||
hot dog
|
|
||||||
pizza
|
|
||||||
donut
|
|
||||||
cake
|
|
||||||
chair
|
|
||||||
couch
|
|
||||||
potted plant
|
|
||||||
bed
|
|
||||||
mirror
|
|
||||||
dining table
|
|
||||||
window
|
|
||||||
desk
|
|
||||||
toilet
|
|
||||||
door
|
|
||||||
tv
|
|
||||||
laptop
|
|
||||||
mouse
|
|
||||||
remote
|
|
||||||
keyboard
|
|
||||||
cell phone
|
|
||||||
microwave
|
|
||||||
oven
|
|
||||||
toaster
|
|
||||||
sink
|
|
||||||
refrigerator
|
|
||||||
blender
|
|
||||||
book
|
|
||||||
clock
|
|
||||||
vase
|
|
||||||
scissors
|
|
||||||
teddy bear
|
|
||||||
hair drier
|
|
||||||
toothbrush
|
|
||||||
hair brush
|
|
|
@ -1,24 +0,0 @@
|
||||||
#!/bin/bash
|
|
||||||
# Zip coco folder
|
|
||||||
# zip -r coco.zip coco
|
|
||||||
# tar -czvf coco.tar.gz coco
|
|
||||||
|
|
||||||
# Download labels from Google Drive, accepting presented query
|
|
||||||
filename="coco2014labels.zip"
|
|
||||||
fileid="1s6-CmF5_SElM28r52P1OUrCcuXZN-SFo"
|
|
||||||
curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}" > /dev/null
|
|
||||||
curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
|
|
||||||
rm ./cookie
|
|
||||||
|
|
||||||
# Unzip labels
|
|
||||||
unzip -q ${filename} # for coco.zip
|
|
||||||
# tar -xzf ${filename} # for coco.tar.gz
|
|
||||||
rm ${filename}
|
|
||||||
|
|
||||||
# Download and unzip images
|
|
||||||
cd coco/images
|
|
||||||
f="train2014.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f
|
|
||||||
f="val2014.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f
|
|
||||||
|
|
||||||
# cd out
|
|
||||||
cd ../..
|
|
|
@ -1,24 +0,0 @@
|
||||||
#!/bin/bash
|
|
||||||
# Zip coco folder
|
|
||||||
# zip -r coco.zip coco
|
|
||||||
# tar -czvf coco.tar.gz coco
|
|
||||||
|
|
||||||
# Download labels from Google Drive, accepting presented query
|
|
||||||
filename="coco2017labels.zip"
|
|
||||||
fileid="1cXZR_ckHki6nddOmcysCuuJFM--T-Q6L"
|
|
||||||
curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}" > /dev/null
|
|
||||||
curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
|
|
||||||
rm ./cookie
|
|
||||||
|
|
||||||
# Unzip labels
|
|
||||||
unzip -q ${filename} # for coco.zip
|
|
||||||
# tar -xzf ${filename} # for coco.tar.gz
|
|
||||||
rm ${filename}
|
|
||||||
|
|
||||||
# Download and unzip images
|
|
||||||
cd coco/images
|
|
||||||
f="train2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f
|
|
||||||
f="val2017.zip" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f && rm $f
|
|
||||||
|
|
||||||
# cd out
|
|
||||||
cd ../..
|
|
Binary file not shown.
Before Width: | Height: | Size: 476 KiB |
Binary file not shown.
Before Width: | Height: | Size: 165 KiB |
|
@ -1,21 +0,0 @@
|
||||||
# pip install -U -r requirements.txt
|
|
||||||
# pycocotools requires numpy 1.17 https://github.com/cocodataset/cocoapi/issues/356
|
|
||||||
numpy == 1.17
|
|
||||||
opencv-python >= 4.1
|
|
||||||
torch >= 1.5
|
|
||||||
matplotlib
|
|
||||||
pycocotools
|
|
||||||
tqdm
|
|
||||||
pillow
|
|
||||||
tensorboard >= 1.14
|
|
||||||
|
|
||||||
# Nvidia Apex (optional) for mixed precision training --------------------------
|
|
||||||
# git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
|
|
||||||
|
|
||||||
# Conda commands (in place of pip) ---------------------------------------------
|
|
||||||
# conda update -yn base -c defaults conda
|
|
||||||
# conda install -yc anaconda numpy opencv matplotlib tqdm pillow ipython
|
|
||||||
# conda install -yc conda-forge scikit-image pycocotools tensorboard
|
|
||||||
# conda install -yc spyder-ide spyder-line-profiler
|
|
||||||
# conda install -yc pytorch pytorch torchvision
|
|
||||||
# conda install -yc conda-forge protobuf numpy && pip install onnx # https://github.com/onnx/onnx#linux-and-macos
|
|
495
tutorial.ipynb
495
tutorial.ipynb
File diff suppressed because one or more lines are too long
|
@ -7,7 +7,7 @@
|
||||||
|
|
||||||
while true; do
|
while true; do
|
||||||
# python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 100 --batch 64 --accum 1 --weights yolov3-tiny.conv.15 --multi --bucket ult/wer --evolve --cache --device $1 --cfg yolov3-tiny3-1cls.cfg --single --adam
|
# python3 train.py --data ../data/sm4/out.data --img-size 320 --epochs 100 --batch 64 --accum 1 --weights yolov3-tiny.conv.15 --multi --bucket ult/wer --evolve --cache --device $1 --cfg yolov3-tiny3-1cls.cfg --single --adam
|
||||||
# python3 train.py --data ../out/data.data --img-size 608 --epochs 10 --batch 8 --accum 8 --weights ultralytics68.pt --multi --bucket ult/athena --evolve --device $1 --cfg yolov3-spp-1cls.cfg
|
# python3 train.py --data ../out/data.data --img-size 608 --epochs 10 --batch 8 --accum 8 --weights ultralytics68.pt --multi --bucket ult/athena --evolve --device $1 --cfg yolov3-spp-18cls.cfg
|
||||||
|
|
||||||
python3 train.py --data coco2014.data --img-size 512 608 --epochs 27 --batch 8 --accum 8 --evolve --weights '' --bucket ult/coco/sppa_512 --device $1 --cfg yolov3-sppa.cfg --multi
|
python3 train.py --data coco2014.data --img-size 512 608 --epochs 27 --batch 8 --accum 8 --evolve --weights '' --bucket ult/coco/sppa_512 --device $1 --cfg yolov3-sppa.cfg --multi
|
||||||
done
|
done
|
||||||
|
|
Loading…
Reference in New Issue