diff --git a/train.py b/train.py index e73849f7..d3e20aa8 100644 --- a/train.py +++ b/train.py @@ -36,10 +36,10 @@ hyp = {'giou': 3.54, # giou loss gain 'hsv_h': 0.0138, # image HSV-Hue augmentation (fraction) 'hsv_s': 0.678, # image HSV-Saturation augmentation (fraction) 'hsv_v': 0.36, # image HSV-Value augmentation (fraction) - 'degrees': 1.98, # image rotation (+/- deg) - 'translate': 0.05, # image translation (+/- fraction) - 'scale': 0.05, # image scale (+/- gain) - 'shear': 0.641} # image shear (+/- deg) + 'degrees': 1.98 * 0, # image rotation (+/- deg) + 'translate': 0.05 * 0, # image translation (+/- fraction) + 'scale': 0.05 * 0, # image scale (+/- gain) + 'shear': 0.641 * 0} # image shear (+/- deg) # Overwrite hyp with hyp*.txt (optional) f = glob.glob('hyp*.txt') @@ -197,7 +197,7 @@ def train(): # Start training nb = len(dataloader) - prebias = start_epoch == 0 + prebias = False # start_epoch == 0 model.nc = nc # attach number of classes to model model.arc = opt.arc # attach yolo architecture model.hyp = hyp # attach hyperparameters to model @@ -211,7 +211,7 @@ def train(): print('Starting training for %g epochs...' % epochs) for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() - model.gr = 1 - (1 + math.cos(min(epoch * 2, epochs) * math.pi / epochs)) / 2 # GIoU <-> 1.0 loss ratio + model.gr = 1 - (1 + math.cos(min(epoch * 1, epochs) * math.pi / epochs)) / 2 # GIoU <-> 1.0 loss ratio # Prebias if prebias: