class labeling corrections
This commit is contained in:
parent
1ca352b328
commit
786e10a197
45
detect.py
45
detect.py
|
@ -17,7 +17,8 @@ def detect(
|
||||||
conf_thres=0.3,
|
conf_thres=0.3,
|
||||||
nms_thres=0.45,
|
nms_thres=0.45,
|
||||||
save_txt=False,
|
save_txt=False,
|
||||||
save_images=True
|
save_images=True,
|
||||||
|
webcam=False
|
||||||
):
|
):
|
||||||
device = torch_utils.select_device()
|
device = torch_utils.select_device()
|
||||||
os.system('rm -rf ' + output)
|
os.system('rm -rf ' + output)
|
||||||
|
@ -37,15 +38,20 @@ def detect(
|
||||||
model.to(device).eval()
|
model.to(device).eval()
|
||||||
|
|
||||||
# Set Dataloader
|
# Set Dataloader
|
||||||
dataloader = LoadImages(images, img_size=img_size)
|
if webcam:
|
||||||
|
save_images = False
|
||||||
|
dataloader = LoadWebcam(images, img_size=img_size)
|
||||||
|
else:
|
||||||
|
dataloader = LoadImages(images, img_size=img_size)
|
||||||
|
|
||||||
# Get classes and colors
|
# Get classes and colors
|
||||||
classes = load_classes(parse_data_cfg('cfg/coco.data')['names'])
|
classes = load_classes(parse_data_cfg('cfg/coco.data')['names'])
|
||||||
colors = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
|
colors = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
|
||||||
|
|
||||||
for i, (path, img, im0) in enumerate(dataloader):
|
for i, (path, img, im0) in enumerate(dataloader):
|
||||||
print("%g/%g '%s': " % (i + 1, len(dataloader), path), end='')
|
|
||||||
t = time.time()
|
t = time.time()
|
||||||
|
print("%g/%g '%s': " % (i + 1, len(dataloader), path), end='')
|
||||||
|
save_path = os.path.join(output, path.split('/')[-1])
|
||||||
|
|
||||||
# Get detections
|
# Get detections
|
||||||
img = torch.from_numpy(img).unsqueeze(0).to(device)
|
img = torch.from_numpy(img).unsqueeze(0).to(device)
|
||||||
|
@ -53,45 +59,48 @@ def detect(
|
||||||
torch.onnx._export(model, img, 'weights/model.onnx', verbose=True)
|
torch.onnx._export(model, img, 'weights/model.onnx', verbose=True)
|
||||||
return # ONNX export
|
return # ONNX export
|
||||||
pred = model(img)
|
pred = model(img)
|
||||||
pred = pred[pred[:, :, 4] > conf_thres]
|
pred = pred[pred[:, :, 4] > conf_thres] # remove boxes < threshold
|
||||||
|
|
||||||
if len(pred) > 0:
|
if len(pred) > 0:
|
||||||
|
# Run NMS on predictions
|
||||||
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
|
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
|
||||||
|
|
||||||
# Draw bounding boxes and labels of detections
|
|
||||||
if detections is not None:
|
|
||||||
save_path = os.path.join(output, path.split('/')[-1])
|
|
||||||
|
|
||||||
# Rescale boxes from 416 to true image size
|
# Rescale boxes from 416 to true image size
|
||||||
detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape)
|
detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape)
|
||||||
|
|
||||||
|
# Print results to screen
|
||||||
unique_classes = detections[:, -1].cpu().unique()
|
unique_classes = detections[:, -1].cpu().unique()
|
||||||
for i in unique_classes:
|
for i in unique_classes:
|
||||||
n = (detections[:, -1].cpu() == i).sum()
|
n = (detections[:, -1].cpu() == i).sum()
|
||||||
print('%g %ss' % (n, classes[int(i)]), end=', ')
|
print('%g %ss' % (n, classes[int(i)]), end=', ')
|
||||||
|
|
||||||
|
# Draw bounding boxes and labels of detections
|
||||||
for x1, y1, x2, y2, conf, cls_conf, cls in detections:
|
for x1, y1, x2, y2, conf, cls_conf, cls in detections:
|
||||||
if save_txt: # Write to file
|
if save_txt: # Write to file
|
||||||
with open(save_path + '.txt', 'a') as file:
|
with open(save_path + '.txt', 'a') as file:
|
||||||
file.write('%g %g %g %g %g %g\n' % (x1, y1, x2, y2, cls, cls_conf * conf))
|
file.write('%g %g %g %g %g %g\n' %
|
||||||
|
(x1, y1, x2, y2, cls, cls_conf * conf))
|
||||||
|
|
||||||
if save_images: # Add bbox to the image
|
# Add bbox to the image
|
||||||
label = '%s %.2f' % (classes[int(cls)], conf)
|
label = '%s %.2f' % (classes[int(cls)], conf)
|
||||||
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[int(cls)])
|
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[int(cls)])
|
||||||
|
|
||||||
if save_images: # Save generated image with detections
|
|
||||||
cv2.imwrite(save_path, im0)
|
|
||||||
|
|
||||||
print('Done. (%.3fs)' % (time.time() - t))
|
print('Done. (%.3fs)' % (time.time() - t))
|
||||||
|
|
||||||
if platform == 'darwin': # MacOS
|
if save_images: # Save generated image with detections
|
||||||
|
cv2.imwrite(save_path, im0)
|
||||||
|
|
||||||
|
if webcam: # Show live webcam
|
||||||
|
cv2.imshow(weights, im0)
|
||||||
|
|
||||||
|
if save_images and (platform == 'darwin'): # MacOS
|
||||||
os.system('open ' + output + '&& open ' + save_path)
|
os.system('open ' + output + '&& open ' + save_path)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3-tiny.cfg', help='cfg file path')
|
||||||
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
|
parser.add_argument('--weights', type=str, default='weights/yolov3-tiny.pt', help='path to weights file')
|
||||||
parser.add_argument('--images', type=str, default='data/samples', help='path to images')
|
parser.add_argument('--images', type=str, default='data/samples', help='path to images')
|
||||||
parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
|
parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
|
||||||
parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
|
parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
|
||||||
|
|
|
@ -55,6 +55,42 @@ class LoadImages: # for inference
|
||||||
return self.nF # number of files
|
return self.nF # number of files
|
||||||
|
|
||||||
|
|
||||||
|
class LoadWebcam: # for inference
|
||||||
|
def __init__(self, path, img_size=416):
|
||||||
|
self.cam = cv2.VideoCapture(0)
|
||||||
|
self.nF = 9999 # number of image files
|
||||||
|
self.height = img_size
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self.count = -1
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
self.count += 1
|
||||||
|
if cv2.waitKey(1) == 27: # esc to quit
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
raise StopIteration
|
||||||
|
|
||||||
|
# Read image
|
||||||
|
ret_val, img0 = self.cam.read()
|
||||||
|
assert ret_val, 'Webcam Error'
|
||||||
|
img_path = 'webcam_%g.jpg' % self.count
|
||||||
|
img0 = cv2.flip(img0, 1)
|
||||||
|
|
||||||
|
# Padded resize
|
||||||
|
img, _, _, _ = letterbox(img0, height=self.height)
|
||||||
|
|
||||||
|
# Normalize RGB
|
||||||
|
img = img[:, :, ::-1].transpose(2, 0, 1)
|
||||||
|
img = np.ascontiguousarray(img, dtype=np.float32)
|
||||||
|
img /= 255.0
|
||||||
|
|
||||||
|
return img_path, img, img0
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.nF # number of files
|
||||||
|
|
||||||
|
|
||||||
class LoadImagesAndLabels: # for training
|
class LoadImagesAndLabels: # for training
|
||||||
def __init__(self, path, batch_size=1, img_size=608, multi_scale=False, augment=False):
|
def __init__(self, path, batch_size=1, img_size=608, multi_scale=False, augment=False):
|
||||||
self.path = path
|
self.path = path
|
||||||
|
|
Loading…
Reference in New Issue