diff --git a/utils/utils.py b/utils/utils.py index 59447312..99eb38be 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -388,10 +388,6 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): dc = dc[1:][iou < nms_thres] # remove ious > threshold # Image Total P R mAP - # 32 5000 0.633 0.579 0.568 - # 64 5000 0.619 0.579 0.568 - # 96 5000 0.652 0.622 0.613 - # 128 5000 0.651 0.625 0.617 # 5000 5000 0.627 0.593 0.584 elif nms_style == 'AND': # requires overlap, single boxes erased @@ -406,16 +402,15 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): iou = bbox_iou(dc[:1], dc[0:]) # iou with other boxes i = iou > nms_thres - weights = (dc[i, 4:5] * dc[i, 5:6]) ** 0.5 + weights = (dc[i, 4:5] * dc[i, 5:6]) ** 2 dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum() det_max.append(dc[:1]) dc = dc[iou < nms_thres] # Image Total P R mAP - # 32 5000 0.635 0.581 0.569 - # 64 5000 0.63 0.591 0.578 - # 96 5000 0.66 0.63 0.62 - # 128 5000 0.657 0.631 0.622 + # 4964 5000 0.632 0.597 0.588 # normal + # 4964 5000 0.632 0.597 0.588 # squared + # 4964 5000 0.631 0.597 0.588 # sqrt if len(det_max) > 0: det_max = torch.cat(det_max)