documentation update

This commit is contained in:
Glenn Jocher 2020-04-01 12:12:14 -07:00
parent 5b322b6038
commit 765b8f3a3b
1 changed files with 7 additions and 11 deletions

View File

@ -37,25 +37,21 @@ All dependencies are included in the associated docker images. Docker requiremen
# Tutorials
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
* [Transfer Learning](https://github.com/ultralytics/yolov3/wiki/Example:-Transfer-Learning)
* [Train Single Image](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Image)
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ** << recommended**
* [Train Single Class](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class)
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data)
# Jupyter Notebook
Our Jupyter [notebook](https://colab.research.google.com/github/ultralytics/yolov3/blob/master/examples.ipynb) provides quick training, inference and testing examples.
* [Google Colab Notebook](https://colab.research.google.com/drive/1G8T-VFxQkjDe4idzN8F-hbIBqkkkQnxw) with quick training, inference and testing examples
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)
# Training
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco_dataset.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco2017.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`.
**Plot Training:** `from utils import utils; utils.plot_results()` plots training results from `coco_16img.data`, `coco_64img.data`, 2 example datasets available in the `data/` folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.
**Plot Training:** `from utils import utils; utils.plot_results()`
<img src="https://user-images.githubusercontent.com/26833433/63258271-fe9d5300-c27b-11e9-9a15-95038daf4438.png" width="900">
<img src="https://user-images.githubusercontent.com/26833433/78175826-599d4800-7410-11ea-87d4-f629071838f6.png" width="900">
## Image Augmentation