diff --git a/test.py b/test.py index 9c0bae55..a848369d 100644 --- a/test.py +++ b/test.py @@ -70,16 +70,16 @@ def test( # Save JSON if save_json: # rescale box to original image size, top left origin - sbox = torch.from_numpy(detections[:, :4]).clone() # x1y1x2y2 - scale_coords(img_size, sbox, shapes[si]) - sbox = xyxy2xywh(sbox) - sbox[:, :2] -= sbox[:, 2:] / 2 # origin from center to corner + box = torch.from_numpy(detections[:, :4]).clone() # x1y1x2y2 + scale_coords(img_size, box, shapes[si]) + box = xyxy2xywh(box) + box[:, :2] -= box[:, 2:] / 2 # origin center to corner for di, d in enumerate(detections): jdict.append({ # add to json dictionary 'image_id': int(Path(paths[si]).stem.split('_')[-1]), 'category_id': darknet2coco_class(int(d[6])), - 'bbox': [float3(x) for x in sbox[di]], + 'bbox': [float3(x) for x in box[di]], 'score': float3(d[4] * d[5]) }) @@ -174,7 +174,7 @@ if __name__ == '__main__': parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') - parser.add_argument('--coco-map', action='store_true', help='use pycocotools mAP') + parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension') opt = parser.parse_args() print(opt, end='\n\n') @@ -189,7 +189,7 @@ if __name__ == '__main__': opt.iou_thres, opt.conf_thres, opt.nms_thres, - opt.coco_map + opt.save_json ) # Image Total P R mAP # YOLOv3 320