diff --git a/utils/datasets.py b/utils/datasets.py index 4fa74ac3..3d831e71 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -240,7 +240,7 @@ class LoadStreams: # multiple IP or RTSP cameras raise StopIteration # Letterbox - img = [letterbox(x, new_shape=self.img_size, auto=self.rect, interp=cv2.INTER_LINEAR)[0] for x in img0] + img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0] # Stack img = np.stack(img, 0) @@ -508,8 +508,7 @@ def load_image(self, index): h0, w0 = img.shape[:2] # orig hw r = self.img_size / max(h0, w0) # resize image to img_size if r < 1 or (self.augment and (r != 1)): # always resize down, only resize up if training with augmentation - interp = cv2.INTER_LINEAR if self.augment else cv2.INTER_AREA # LINEAR for training, AREA for testing - img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) + img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR) return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized else: return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized @@ -589,8 +588,7 @@ def load_mosaic(self, index): return img4, labels4 -def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), - auto=True, scaleFill=False, scaleup=True, interp=cv2.INTER_AREA): +def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): @@ -616,7 +614,7 @@ def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), dh /= 2 if shape[::-1] != new_unpad: # resize - img = cv2.resize(img, new_unpad, interpolation=interp) # INTER_AREA is better, INTER_LINEAR is faster + img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border @@ -651,9 +649,8 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, # Combined rotation matrix M = S @ T @ R # ORDER IS IMPORTANT HERE!! - changed = (border != 0) or (M != np.eye(3)).any() - if changed: - img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA, borderValue=(114, 114, 114)) + if (border != 0) or (M != np.eye(3)).any(): # image changed + img = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=(114, 114, 114)) # Transform label coordinates n = len(targets)