Comment updates on box coordinates (#852)
* Update utils.py Reusing function defined above * Update utils.py * Reverting change which break bbox coordinate computation * Update utils.py Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
a52c0abf8d
commit
666ba85ed3
|
@ -103,22 +103,22 @@ def weights_init_normal(m):
|
|||
|
||||
|
||||
def xyxy2xywh(x):
|
||||
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
|
||||
# Transform box coordinates from [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) to [x, y, w, h]
|
||||
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
|
||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
|
||||
y[:, 2] = x[:, 2] - x[:, 0]
|
||||
y[:, 3] = x[:, 3] - x[:, 1]
|
||||
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||
return y
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
|
||||
# Transform box coordinates from [x, y, w, h] to [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right)
|
||||
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
|
@ -264,7 +264,7 @@ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
|
|||
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||
else: # x, y, w, h = box1
|
||||
else: # transform from xywh to xyxy
|
||||
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||||
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||||
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||||
|
@ -670,8 +670,6 @@ def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_op
|
|||
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
|
||||
x = torch.load(f, map_location=torch.device('cpu'))
|
||||
x['optimizer'] = None
|
||||
# x['training_results'] = None # uncomment to create a backbone
|
||||
# x['epoch'] = -1 # uncomment to create a backbone
|
||||
torch.save(x, f)
|
||||
|
||||
|
||||
|
@ -1038,7 +1036,7 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re
|
|||
|
||||
|
||||
def plot_results(start=0, stop=0, bucket='', id=()): # from utils.utils import *; plot_results()
|
||||
# Plot training results files 'results*.txt'
|
||||
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov3#training
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
||||
ax = ax.ravel()
|
||||
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||
|
|
Loading…
Reference in New Issue