reapply yolo width and height
This commit is contained in:
		
							parent
							
								
									cf9b4cfa52
								
							
						
					
					
						commit
						5d402ad31a
					
				
							
								
								
									
										16
									
								
								models.py
								
								
								
								
							
							
						
						
									
										16
									
								
								models.py
								
								
								
								
							|  | @ -119,16 +119,16 @@ class YOLOLayer(nn.Module): | |||
|         y = torch.sigmoid(p[..., 1])  # Center y | ||||
| 
 | ||||
|         # Width and height (yolo method) | ||||
|         # w = p[..., 2]  # Width | ||||
|         # h = p[..., 3]  # Height | ||||
|         # width = torch.exp(w.data) * self.anchor_w | ||||
|         # height = torch.exp(h.data) * self.anchor_h | ||||
|         w = p[..., 2]  # Width | ||||
|         h = p[..., 3]  # Height | ||||
|         width = torch.exp(w.data) * self.anchor_w | ||||
|         height = torch.exp(h.data) * self.anchor_h | ||||
| 
 | ||||
|         # Width and height (power method) | ||||
|         w = torch.sigmoid(p[..., 2])  # Width | ||||
|         h = torch.sigmoid(p[..., 3])  # Height | ||||
|         width = ((w.data * 2) ** 2) * self.anchor_w | ||||
|         height = ((h.data * 2) ** 2) * self.anchor_h | ||||
|         # w = torch.sigmoid(p[..., 2])  # Width | ||||
|         # h = torch.sigmoid(p[..., 3])  # Height | ||||
|         # width = ((w.data * 2) ** 2) * self.anchor_w | ||||
|         # height = ((h.data * 2) ** 2) * self.anchor_h | ||||
| 
 | ||||
|         # Add offset and scale with anchors (in grid space, i.e. 0-13) | ||||
|         pred_boxes = FT(bs, self.nA, nG, nG, 4) | ||||
|  |  | |||
|  | @ -263,13 +263,13 @@ def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG | |||
|         tx[b, a, gj, gi] = gx - gi.float() | ||||
|         ty[b, a, gj, gi] = gy - gj.float() | ||||
| 
 | ||||
|         # Width and height (power method) | ||||
|         tw[b, a, gj, gi] = torch.sqrt(gw / anchor_wh[a, 0]) / 2 | ||||
|         th[b, a, gj, gi] = torch.sqrt(gh / anchor_wh[a, 1]) / 2 | ||||
|         # Width and height (yolo method) | ||||
|         tw[b, a, gj, gi] = torch.log(gw / anchor_wh[a, 0] + 1e-16) | ||||
|         th[b, a, gj, gi] = torch.log(gh / anchor_wh[a, 1] + 1e-16) | ||||
| 
 | ||||
|         # Width and height (yolov3 method) | ||||
|         # tw[b, a, gj, gi] = torch.log(gw / anchor_wh[a, 0] + 1e-16) | ||||
|         # th[b, a, gj, gi] = torch.log(gh / anchor_wh[a, 1] + 1e-16) | ||||
|         # Width and height (power method) | ||||
|         # tw[b, a, gj, gi] = torch.sqrt(gw / anchor_wh[a, 0]) / 2 | ||||
|         # th[b, a, gj, gi] = torch.sqrt(gh / anchor_wh[a, 1]) / 2 | ||||
| 
 | ||||
|         # One-hot encoding of label | ||||
|         tcls[b, a, gj, gi, tc] = 1 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue