This commit is contained in:
Glenn Jocher 2020-01-12 15:56:42 -08:00
parent b890ccecfc
commit 5ac3eb42b6
1 changed files with 14 additions and 5 deletions

View File

@ -446,7 +446,7 @@ if __name__ == '__main__':
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s) # Select parent(s)
x = np.loadtxt('evolve.txt', ndmin=2) x = np.loadtxt('evolve.txt', ndmin=2)
parent = 'weighted' # parent selection method: 'single' or 'weighted' parent = 'single' # parent selection method: 'single' or 'weighted'
if parent == 'single' or len(x) == 1: if parent == 'single' or len(x) == 1:
x = x[fitness(x).argmax()] x = x[fitness(x).argmax()]
elif parent == 'weighted': # weighted combination elif parent == 'weighted': # weighted combination
@ -456,12 +456,21 @@ if __name__ == '__main__':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # new parent x = (x * w.reshape(n, 1)).sum(0) / w.sum() # new parent
# Mutate # Mutate
mutate_version = 2
np.random.seed(int(time.time())) np.random.seed(int(time.time()))
s = np.random.random() * 0.2 # sigma s = 0.2 # 20% sigma
g = [1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # gains g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # gains
g = (np.random.randn(len(g)) * np.array(g) * s + 1) ** 2.0 # plt.hist(x.ravel(), 300) ng = len(g)
if mutate_version == 1:
s *= np.random.random() # sigma
v = (np.random.randn(ng) * g * s + 1) ** 2.0 # plt.hist(x.ravel(), 300)
else:
v = np.ones(ng)
while all(v == 1): # mutate untill a change occurs (prevent duplicates)
r = (np.random.random(ng) < 0.1) * np.random.randn(ng) # 10% mutation probability
v = (g * s * r + 1) ** 2.0 # plt.hist(x.ravel(), 300)
for i, k in enumerate(hyp.keys()): for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 7] * g[i] # mutate parent hyp[k] = x[i + 7] * v[i] # mutate
# Clip to limits # Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma'] keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']