updates
This commit is contained in:
parent
641e354948
commit
58f2d9306b
|
@ -3,7 +3,7 @@
|
||||||
# Introduction
|
# Introduction
|
||||||
|
|
||||||
This directory contains software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information on Ultralytics projects please visit:
|
This directory contains software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information on Ultralytics projects please visit:
|
||||||
http://www.ultralytics.com
|
http://www.ultralytics.com
|
||||||
|
|
||||||
# Description
|
# Description
|
||||||
|
|
||||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 242 KiB After Width: | Height: | Size: 277 KiB |
9
test.py
9
test.py
|
@ -42,13 +42,11 @@ elif weights_path.endswith('.pt'): # pytorch format
|
||||||
|
|
||||||
model.to(device).eval()
|
model.to(device).eval()
|
||||||
|
|
||||||
# Get PyTorch dataloader
|
# Get dataloader
|
||||||
# dataset = load_images_with_labels(test_path)
|
# dataset = load_images_with_labels(test_path)
|
||||||
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
|
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
|
||||||
dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_size=opt.img_size)
|
dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_size=opt.img_size)
|
||||||
|
|
||||||
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
|
|
||||||
|
|
||||||
n_gt = 0
|
n_gt = 0
|
||||||
correct = 0
|
correct = 0
|
||||||
|
|
||||||
|
@ -87,11 +85,6 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
|
||||||
correct.extend([0 for _ in range(len(detections))])
|
correct.extend([0 for _ in range(len(detections))])
|
||||||
else:
|
else:
|
||||||
# Extract target boxes as (x1, y1, x2, y2)
|
# Extract target boxes as (x1, y1, x2, y2)
|
||||||
# target_boxes = torch.FloatTensor(annotations[:, 1:].shape)
|
|
||||||
# target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2)
|
|
||||||
# target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2)
|
|
||||||
# target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2)
|
|
||||||
# target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2)
|
|
||||||
target_boxes = xywh2xyxy(annotations[:,1:5])
|
target_boxes = xywh2xyxy(annotations[:,1:5])
|
||||||
target_boxes *= opt.img_size
|
target_boxes *= opt.img_size
|
||||||
|
|
||||||
|
|
|
@ -368,10 +368,10 @@ def plotResults():
|
||||||
plt.figure(figsize=(16, 8))
|
plt.figure(figsize=(16, 8))
|
||||||
s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall']
|
s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall']
|
||||||
for f in ('/Users/glennjocher/Downloads/results.txt',
|
for f in ('/Users/glennjocher/Downloads/results.txt',
|
||||||
''):
|
'/Users/glennjocher/Downloads/resultsBCE2.txt'):
|
||||||
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 9, 10]).T
|
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 9, 10]).T
|
||||||
for i in range(9):
|
for i in range(9):
|
||||||
plt.subplot(2, 5, i + 1)
|
plt.subplot(2, 5, i + 1)
|
||||||
plt.plot(results[i, :], marker='.', label=f)
|
plt.plot(results[i, :], marker='.', label=f)
|
||||||
plt.title(s[i])
|
plt.title(s[i])
|
||||||
plt.legend()
|
plt.legend(cocococosadfc)
|
||||||
|
|
Loading…
Reference in New Issue