diff --git a/our_scripts/detect.py b/our_scripts/detect.py new file mode 100644 index 00000000..b4aaf229 --- /dev/null +++ b/our_scripts/detect.py @@ -0,0 +1,209 @@ +import argparse + +from models import * # set ONNX_EXPORT in models.py +from utils.datasets import * +from utils.utils import * + + +def detect(save_img=False): + imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width) + out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt + webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') + + # Initialize + device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device) + if os.path.exists(out): + shutil.rmtree(out) # delete output folder + os.makedirs(out) # make new output folder + + # Initialize model + model = Darknet(opt.cfg, imgsz) + + # Load weights + attempt_download(weights) + if weights.endswith('.pt'): # pytorch format + model.load_state_dict(torch.load(weights, map_location=device)['model']) + else: # darknet format + load_darknet_weights(model, weights) + + # Second-stage classifier + classify = False + if classify: + modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize + modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights + modelc.to(device).eval() + + # Eval mode + model.to(device).eval() + + # Fuse Conv2d + BatchNorm2d layers + # model.fuse() + + # Export mode + if ONNX_EXPORT: + model.fuse() + img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192) + f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename + torch.onnx.export(model, img, f, verbose=False, opset_version=11, + input_names=['images'], output_names=['classes', 'boxes']) + + # Validate exported model + import onnx + model = onnx.load(f) # Load the ONNX model + onnx.checker.check_model(model) # Check that the IR is well formed + print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph + return + + # Half precision + half = half and device.type != 'cpu' # half precision only supported on CUDA + if half: + model.half() + + # Set Dataloader + vid_path, vid_writer = None, None + if webcam: + view_img = True + torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference + dataset = LoadStreams(source, img_size=imgsz) + else: + save_img = True + dataset = LoadImages(source, img_size=imgsz) + + # Get names and colors + names = load_classes(opt.names) + colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] + output_json_file = open(opt.json, 'w') + + # Run inference + t0 = time.time() + img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img + _ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once + for i, (path, img, im0s, vid_cap) in enumerate(dataset): + json = {"detections": []} + img = torch.from_numpy(img).to(device) + img = img.half() if half else img.float() # uint8 to fp16/32 + img /= 255.0 # 0 - 255 to 0.0 - 1.0 + if img.ndimension() == 3: + img = img.unsqueeze(0) + + # Inference + t1 = torch_utils.time_synchronized() + pred = model(img, augment=opt.augment)[0] + t2 = torch_utils.time_synchronized() + + # to float + if half: + pred = pred.float() + + # Apply NMS + pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, + multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms) + + # Apply Classifier + if classify: + pred = apply_classifier(pred, modelc, img, im0s) + + # Process detections + for i, det in enumerate(pred): # detections for image i + if webcam: # batch_size >= 1 + p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() + else: + p, s, im0 = path, '', im0s + + save_path = str(Path(out) / Path(p).name) + s += '%gx%g ' % img.shape[2:] # print string + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] #  normalization gain whwh + if det is not None and len(det): + # Rescale boxes from imgsz to im0 size + det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() + + # Print results + for c in det[:, -1].unique(): + n = (det[:, -1] == c).sum() # detections per class + s += '%g %ss, ' % (n, names[int(c)]) # add to string + + # Write results + for *xyxy, conf, cls in det: + if save_txt: # Write to file + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: + file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format + + label_to_display = '%s %.2f' % (names[int(cls)], conf) + name = '%s' % names[int(cls)] + probability = float('%.3f' % conf) + left, top, right, bottom = plot_one_box(xyxy, im0, label=label_to_display, color=colors[int(cls)]) + json["detections"].append({"classes": [{"name": name, "probability": probability}], + "rect": {"bottom": bottom, "left": left, "right": right, "top": top}}) + + if save_img or view_img: # Add bbox to image + label = '%s %.2f' % (names[int(cls)], conf) + plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) + + # Print time (inference + NMS) + print('%sDone. (%.3fs)' % (s, t2 - t1)) + + json["frameId"] = i + line = str(json).replace("\'", "\"") + + output_json_file.write(line) + output_json_file.write("\n") + + # Stream results + if view_img: + cv2.imshow(p, im0) + if cv2.waitKey(1) == ord('q'): # q to quit + raise StopIteration + + # Save results (image with detections) + if save_img: + if dataset.mode == 'images': + cv2.imwrite(save_path, im0) + else: + if vid_path != save_path: # new video + vid_path = save_path + if isinstance(vid_writer, cv2.VideoWriter): + vid_writer.release() # release previous video writer + + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) + vid_writer.write(im0) + + output_json_file.close() + if save_txt or save_img: + print('Results saved to %s' % os.getcwd() + os.sep + out) + if platform == 'darwin': # MacOS + os.system('open ' + save_path) + + print('Done. (%.3fs)' % (time.time() - t0)) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path') + parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path') + parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path') + parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam + parser.add_argument('--output', type=str, default='output', help='output folder') # output folder + parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS') + parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') + parser.add_argument('--half', action='store_true', help='half precision FP16 inference') + parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu') + parser.add_argument('--view-img', action='store_true', help='display results') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--classes', nargs='+', type=int, help='filter by class') + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--json', type=str, default='output.txt', help='output json file ') + parser.add_argument('--save-video', type=bool, default=True, help='saving output video') + opt = parser.parse_args() + opt.cfg = check_file(opt.cfg) # check file + opt.names = check_file(opt.names) # check file + print(opt) + + with torch.no_grad(): + detect(opt.save_video)