diff --git a/train.py b/train.py index a9a98c4b..98424ed6 100644 --- a/train.py +++ b/train.py @@ -170,7 +170,7 @@ def train(cfg, t0 = time.time() for epoch in range(start_epoch, epochs): model.train() - print(('\n%8s' + '%10s' * 8) % + print(('\n' + '%10s' * 9) % ('Epoch', 'gpu_mem', 'GIoU/xy', 'wh', 'obj', 'cls', 'total', 'targets', 'img_size')) # Update scheduler @@ -236,7 +236,8 @@ def train(cfg, # Print batch results mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB) - s = ('%8s' + '%10.3g' * 8) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size) + s = ('%10s' * 2 + '%10.3g' * 7) % ( + '%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size) pbar.set_description(s) # print(s) # Calculate mAP (always test final epoch, skip first 5 if opt.nosave)