memory-saving routs update
This commit is contained in:
parent
daaa8194a9
commit
4ac6e88ea9
15
models.py
15
models.py
|
@ -14,9 +14,10 @@ def create_modules(module_defs):
|
|||
hyperparams = module_defs.pop(0)
|
||||
output_filters = [int(hyperparams['channels'])]
|
||||
module_list = nn.ModuleList()
|
||||
routs = [] # list of layers which rout to deeper layes
|
||||
yolo_index = -1
|
||||
|
||||
for mdef in module_defs:
|
||||
for i, mdef in enumerate(module_defs):
|
||||
modules = nn.Sequential()
|
||||
|
||||
if mdef['type'] == 'convolutional':
|
||||
|
@ -53,11 +54,14 @@ def create_modules(module_defs):
|
|||
elif mdef['type'] == 'route': # nn.Sequential() placeholder for 'route' layer
|
||||
layers = [int(x) for x in mdef['layers'].split(',')]
|
||||
filters = sum([output_filters[i + 1 if i > 0 else i] for i in layers])
|
||||
routs.extend([l if l > 0 else l + i for l in layers])
|
||||
# if mdef[i+1]['type'] == 'reorg3d':
|
||||
# modules = nn.Upsample(scale_factor=1/float(mdef[i+1]['stride']), mode='nearest') # reorg3d
|
||||
|
||||
elif mdef['type'] == 'shortcut': # nn.Sequential() placeholder for 'shortcut' layer
|
||||
filters = output_filters[int(mdef['from'])]
|
||||
layer = int(mdef['from'])
|
||||
routs.extend([i + layer if layer < 0 else layer])
|
||||
|
||||
elif mdef['type'] == 'reorg3d': # yolov3-spp-pan-scale
|
||||
# torch.Size([16, 128, 104, 104])
|
||||
|
@ -80,7 +84,7 @@ def create_modules(module_defs):
|
|||
module_list.append(modules)
|
||||
output_filters.append(filters)
|
||||
|
||||
return hyperparams, module_list
|
||||
return module_list, routs
|
||||
|
||||
|
||||
class Swish(nn.Module):
|
||||
|
@ -171,9 +175,8 @@ class Darknet(nn.Module):
|
|||
super(Darknet, self).__init__()
|
||||
|
||||
self.module_defs = parse_model_cfg(cfg)
|
||||
self.module_defs[0]['cfg'] = cfg
|
||||
self.module_defs[0]['height'] = img_size
|
||||
self.hyperparams, self.module_list = create_modules(self.module_defs)
|
||||
self.module_list, self.routs = create_modules(self.module_defs)
|
||||
self.yolo_layers = get_yolo_layers(self)
|
||||
|
||||
# Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
|
||||
|
@ -201,11 +204,11 @@ class Darknet(nn.Module):
|
|||
x = torch.cat([layer_outputs[i] for i in layer_i], 1)
|
||||
# print(''), [print(layer_outputs[i].shape) for i in layer_i], print(x.shape)
|
||||
elif mtype == 'shortcut':
|
||||
x = layer_outputs[-1] + layer_outputs[int(mdef['from']) ]
|
||||
x = x + layer_outputs[int(mdef['from'])]
|
||||
elif mtype == 'yolo':
|
||||
x = module(x, img_size)
|
||||
output.append(x)
|
||||
layer_outputs.append(x)
|
||||
layer_outputs.append(x if i in self.routs else [])
|
||||
|
||||
if self.training:
|
||||
return output
|
||||
|
|
Loading…
Reference in New Issue