Update
This commit is contained in:
parent
36fedf62c0
commit
4a923445bc
File diff suppressed because it is too large
Load Diff
|
@ -1,29 +1,23 @@
|
|||
bayes:
|
||||
iterations: 10
|
||||
iterations: 1
|
||||
train:
|
||||
epochs:
|
||||
type: discrete
|
||||
values: [30]
|
||||
values: [400]
|
||||
batch-size:
|
||||
type: discrete
|
||||
min: 1
|
||||
max: 5
|
||||
step: 1
|
||||
values: [4]
|
||||
cfg: ./cfg/yolov3-spp-21cls.cfg
|
||||
data: ./data/widok_01_21.data
|
||||
multi-scale:
|
||||
type: discrete
|
||||
values: [true, false]
|
||||
values: [false]
|
||||
img-size-start:
|
||||
type: discrete
|
||||
min: 512
|
||||
max: 1088
|
||||
step: 64
|
||||
values: [896]
|
||||
img-size-end:
|
||||
type: discrete
|
||||
min: 512
|
||||
max: 1088
|
||||
step: 64
|
||||
values: [1344]
|
||||
rect:
|
||||
type: discrete
|
||||
values: [false]
|
||||
|
@ -33,104 +27,76 @@ train:
|
|||
evolve: false
|
||||
bucket:
|
||||
cache-images: false
|
||||
weights: ./weights/yolov3-spp-ultralytics.pt
|
||||
weights: ./experiments/model2/best.pt
|
||||
device: 1
|
||||
adam:
|
||||
type: discrete
|
||||
values: [true]
|
||||
single-cls: false
|
||||
snapshot-every:
|
||||
freeze-layers: true
|
||||
freeze-layers: false
|
||||
other-hyps:
|
||||
giou:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
type: discrete
|
||||
values: [3.54]
|
||||
cls:
|
||||
type: continuous
|
||||
min: 10.0
|
||||
max: 100.0
|
||||
type: discrete
|
||||
values: [3.74]
|
||||
cls_pw:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
type: discrete
|
||||
values: [1.0]
|
||||
obj:
|
||||
type: continuous
|
||||
min: 10.0
|
||||
max: 100.0
|
||||
type: discrete
|
||||
values: [64.3]
|
||||
obj_pw:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
type: discrete
|
||||
values: [1.0]
|
||||
iou_t:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.2]
|
||||
lr0:
|
||||
type: continuous
|
||||
min: 0.000001
|
||||
max: 0.1
|
||||
type: discrete
|
||||
values: [0.01]
|
||||
lrf:
|
||||
type: continuous
|
||||
min: 0.000001
|
||||
max: 0.1
|
||||
type: discrete
|
||||
values: [0.0005]
|
||||
momentum:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.937]
|
||||
weight_decay:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.0005]
|
||||
fl_gamma:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 10.0
|
||||
type: discrete
|
||||
values: [0.0]
|
||||
hsv_h:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.0138]
|
||||
hsv_s:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.678]
|
||||
hsv_v:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.36]
|
||||
degrees:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 30.0
|
||||
type: discrete
|
||||
values: [0.0]
|
||||
translate:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.0]
|
||||
scale:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.0]
|
||||
shear:
|
||||
type: continuous
|
||||
min: 0.0
|
||||
max: 1.0
|
||||
type: discrete
|
||||
values: [0.0]
|
||||
experiments:
|
||||
dir: ./experiments
|
||||
detect:
|
||||
source: ./data/widok_01_21/widok_01_21_test_labels.txt
|
||||
test-img-size:
|
||||
type: discrete
|
||||
min: 512
|
||||
max: 1088
|
||||
step: 64
|
||||
conf-thres:
|
||||
type: continuous
|
||||
min: 0.3
|
||||
max: 0.6
|
||||
iou-thres:
|
||||
type: continuous
|
||||
min: 0.3
|
||||
max: 0.6
|
||||
test-img-size: 1024
|
||||
conf-thres: 0.45
|
||||
iou-thres: 0.6
|
||||
classes:
|
||||
agnostic-nms:
|
||||
augment:
|
||||
|
|
|
@ -84,9 +84,9 @@ def call_detection_script(gaussian_hyps, weights_path, names_path, dir):
|
|||
--output {detect_output_dir}
|
||||
--names {names_path}
|
||||
--weights {weights_path}
|
||||
--test-img-size {gaussian_hyps['test-img-size']}
|
||||
--conf-thres {gaussian_hyps['conf-thres']}
|
||||
--iou-thres {gaussian_hyps['iou-thres']}
|
||||
--test-img-size {getattr(config.detect, 'test-img-size')}
|
||||
--conf-thres {getattr(config.detect, 'conf-thres')}
|
||||
--iou-thres {getattr(config.detect, 'iou-thres')}
|
||||
--save-txt"""
|
||||
cmd += f" --device {config.train.device}" if config.train.device else ""
|
||||
cmd = " ".join(cmd.split())
|
||||
|
@ -134,12 +134,8 @@ def yolov3(x):
|
|||
'translate': float(x[:, 22]),
|
||||
'scale': float(x[:, 23]),
|
||||
'shear': float(x[:, 24]), # train hyps end index
|
||||
'test-img-size': int(x[:, 25]),
|
||||
'conf-thres': float(x[:, 26]),
|
||||
'iou-thres': float(x[:, 27])
|
||||
}
|
||||
|
||||
line = ""
|
||||
try:
|
||||
call_training_script(bayes_hyps)
|
||||
weights_path, names_path, train_results_dir = move_training_results_to_experiments_dir()
|
||||
|
@ -149,22 +145,23 @@ def yolov3(x):
|
|||
y_dict = get_values_from_conff_matrix(conf_matrix_path)
|
||||
|
||||
# tutaj wzór na wyliczanie funkcji
|
||||
y_val = 1 - (y_dict['match'] * 10 - y_dict['false positives'] * 3 - y_dict['mistakes']) / y_dict['all labels']
|
||||
y_val = (1 - (y_dict['right'] * 10 - y_dict['false positives'] * 3 - y_dict['mistakes']) / y_dict['labeled']) / 30
|
||||
|
||||
# zapisywanie do pliku zadeklarowanego globalnie
|
||||
line = "\t".join([bayes_hyps.__str__(), str(y_val)])
|
||||
print('###### line ########')
|
||||
print(line)
|
||||
bayes_params_file.writelines([line, '\n'])
|
||||
return y_val
|
||||
except:
|
||||
tb = traceback.format_exc()
|
||||
y_max_val = 1
|
||||
print("An error occured during running training-detect-confussion process \n", tb)
|
||||
print("Returning 1 from current bayessian iteration")
|
||||
line = "\t".join([bayes_hyps.__str__(), str(1)])
|
||||
return 1
|
||||
finally:
|
||||
print(f"Returning {y_max_val} from current bayessian iteration")
|
||||
line = "\t".join([bayes_hyps.__str__(), str(y_max_val)])
|
||||
bayes_params_file.writelines([line, '\n'])
|
||||
|
||||
|
||||
return y_max_val
|
||||
# na jakiej rozdzielczości jest puszczana detekcja
|
||||
if __name__ == '__main__':
|
||||
bounds = config.get_bayes_bounds()
|
||||
|
||||
|
@ -172,7 +169,15 @@ if __name__ == '__main__':
|
|||
# wczytywanie z poprzednich eksperymentów plik bayes_params
|
||||
X, Y = load_previous_bayes_experiments(config.experiments.dir)
|
||||
|
||||
constraints = [
|
||||
{
|
||||
'name':'img_size_constraint',
|
||||
'constraint': '(x[:,3] - x[:,4])' # img-size-start - img-size-end <= 0
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
bayes_optimizer = GPyOpt.methods.BayesianOptimization(f=yolov3, domain=bounds, X=X, Y=Y, verbosity=True,
|
||||
initial_design_numdata=2)
|
||||
initial_design_numdata=5, constraints=constraints, )
|
||||
bayes_optimizer.run_optimization(config.bayes.iterations, verbosity=True)
|
||||
bayes_params_file.close()
|
||||
|
|
|
@ -2,9 +2,10 @@ import ast
|
|||
import io
|
||||
import os
|
||||
import subprocess
|
||||
import numpy as np
|
||||
from glob import glob
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def call_subprocess(cmd):
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
|
||||
|
@ -19,7 +20,7 @@ def call_subprocess(cmd):
|
|||
|
||||
|
||||
def get_values_from_conff_matrix(path):
|
||||
lines = open(path, 'r').readlines()[:7]
|
||||
lines = open(path, 'r').readlines()[:6]
|
||||
d = {}
|
||||
for l in lines:
|
||||
key, value, *_ = l.split("\t")
|
||||
|
@ -53,14 +54,15 @@ def get_bayes_params_as_dict(x):
|
|||
'translate': float(x[:, 22]),
|
||||
'scale': float(x[:, 23]),
|
||||
'shear': float(x[:, 24]), # train hyps end index
|
||||
'test-img-size': int(x[:, 25]),
|
||||
'conf-thres': float(x[:, 26]),
|
||||
'iou-thres': float(x[:, 27])
|
||||
}
|
||||
|
||||
|
||||
def load_previous_bayes_experiments(experiments_dir):
|
||||
paths = list(glob(os.path.join(experiments_dir, '*bayes_params.txt')))
|
||||
if len(paths) == 0:
|
||||
print("No bayes files found")
|
||||
return None, None
|
||||
|
||||
y_values = []
|
||||
x_values = []
|
||||
|
||||
|
@ -74,8 +76,14 @@ def load_previous_bayes_experiments(experiments_dir):
|
|||
bayes_values = dict_to_numpy(bayes_dict)
|
||||
x_values.append(bayes_values)
|
||||
y_values.append(float(y_val))
|
||||
|
||||
print("Loaded values from prevous experiments ", dict_str, y_val)
|
||||
except:
|
||||
raise Exception(f"Cannot parse line {line} from file {p}")
|
||||
if not y_values or not x_values:
|
||||
print("No bayes files found")
|
||||
return None, None
|
||||
|
||||
return np.array(x_values), np.array(y_values).reshape((len(y_values), 1))
|
||||
|
||||
|
||||
|
@ -91,3 +99,7 @@ def dict_to_numpy(d):
|
|||
else:
|
||||
x.append(float(value))
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_values_from_conff_matrix('/home/tomekb/yolov3/experiments/2020-08-17_02-05-43/confussion-matrix.tsv')
|
2
train.py
2
train.py
|
@ -234,7 +234,7 @@ def train(hyp):
|
|||
nb = len(dataloader) # number of batches
|
||||
n_burn = max(3 * nb, 500) # burn-in iterations, max(3 epochs, 500 iterations)
|
||||
maps = np.zeros(nc) # mAP per class
|
||||
# torch.autograd.set_detect_anomaly(True)
|
||||
# torch.autograd.set_baddetect_anomaly(True)
|
||||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||||
t0 = time.time()
|
||||
print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
|
||||
|
|
|
@ -44,10 +44,14 @@ def exif_size(img):
|
|||
class LoadImages: # for inference
|
||||
def __init__(self, path, img_size=416):
|
||||
path = str(Path(path)) # os-agnostic
|
||||
files = []
|
||||
if path.endswith("txt"):
|
||||
files = [f.strip() for f in open(path, 'r').readlines()]
|
||||
|
||||
|
||||
|
||||
else:
|
||||
if os.path.isdir(path):
|
||||
files = sorted(glob.glob(os.path.join(path, '*.*')))
|
||||
elif os.path.isfile(path):
|
||||
files = [path]
|
||||
|
||||
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
||||
|
@ -198,7 +202,7 @@ class LoadStreams: # multiple IP or RTSP cameras
|
|||
self.sources = sources
|
||||
for i, s in enumerate(sources):
|
||||
# Start the thread to read frames from the video stream
|
||||
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
||||
print('%g/%g: %s... ' % (i + 1, n, s))
|
||||
cap = cv2.VideoCapture(0 if s == '0' else s)
|
||||
assert cap.isOpened(), 'Failed to open %s' % s
|
||||
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
|
|
Loading…
Reference in New Issue