mAP increases
This commit is contained in:
parent
a322fc5d4b
commit
4a7d9bdba9
38
README.md
38
README.md
|
@ -147,34 +147,34 @@ $ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt
|
|||
|
||||
<i></i> |Size |COCO mAP<br>@0.5...0.95 |COCO mAP<br>@0.5
|
||||
--- | --- | --- | ---
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0<br>28.7<br>30.5<br>**36.6** |29.1<br>51.8<br>52.3<br>**56.0**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0<br>31.2<br>33.9<br>**40.4** |33.0<br>55.4<br>56.9<br>**60.2**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6<br>32.7<br>35.6<br>**41.6** |34.9<br>57.7<br>59.5<br>**61.7**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6<br>33.1<br>37.0<br>**42.1** |35.4<br>58.2<br>60.7<br>**61.7**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0<br>28.7<br>30.5<br>**38.9** |29.1<br>51.8<br>52.3<br>**56.9**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0<br>31.2<br>33.9<br>**42.5** |33.0<br>55.4<br>56.9<br>**61.1**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6<br>32.7<br>35.6<br>**43.6** |34.9<br>57.7<br>59.5<br>**62.5**
|
||||
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6<br>33.1<br>37.0<br>**44.0** |35.4<br>58.2<br>60.7<br>**62.6**
|
||||
|
||||
```bash
|
||||
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 608
|
||||
|
||||
Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weights/yolov3-spp-ultralytics.pt')
|
||||
Namespace(batch_size=16, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weights/yolov3-spp-ultralytics.pt')
|
||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
||||
|
||||
Class Images Targets P R mAP@0.5 F1: 100%|█████| 157/157 [02:46<00:00, 1.06s/it]
|
||||
all 5e+03 3.51e+04 0.51 0.667 0.611 0.574
|
||||
all 5e+03 3.51e+04 0.515 0.665 0.61 0.577
|
||||
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.419
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.448
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.247
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.462
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.534
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.341
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.557
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.606
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.440
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.649
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.735
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.434
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.626
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.469
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.480
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.547
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.346
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.617
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.786
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.730
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.836
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.863
|
||||
|
||||
Speed: 6.5/1.5/8.1 ms inference/NMS/total per 608x608 image at batch-size 32
|
||||
Speed: 6.9/2.1/9.0 ms inference/NMS/total per 608x608 image at batch-size 16
|
||||
```
|
||||
|
||||
# Reproduce Our Results
|
||||
|
|
Loading…
Reference in New Issue