updates
This commit is contained in:
parent
d6edefa8ab
commit
44b340321f
25
train.py
25
train.py
|
@ -12,11 +12,11 @@ from utils.datasets import *
|
|||
from utils.utils import *
|
||||
|
||||
# 320 --epochs 1
|
||||
# 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False
|
||||
# 0.223 0.218 0.138 0.189 9.28 1.153 4.376 0.08263 24.28 3.05 20.93 2.842 0.2759 0.001357 -5.036 0.9158 0.0005722 mAP/F1 - 50/50 weighting
|
||||
# 0.231 0.215 0.135 0.191 9.51 1.432 3.007 0.06082 24.87 3.477 24.13 2.802 0.3436 0.001127 -5.036 0.9232 0.0005874
|
||||
# 0.246 0.194 0.128 0.192 8.12 1.101 3.954 0.0817 22.83 3.967 19.83 1.779 0.3352 0.000895 -5.036 0.9238 0.0007973
|
||||
# 0.187 0.237 0.144 0.186 14.6 1.607 4.202 0.09439 39.27 3.726 31.26 2.634 0.273 0.001542 -5.036 0.8364 0.0008393
|
||||
# 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 a 320 giou + best_anchor False
|
||||
# 0.223 0.218 0.138 0.189 9.28 1.153 4.376 0.08263 24.28 3.05 20.93 2.842 0.2759 0.001357 -5.036 0.9158 0.0005722 b mAP/F1 - 50/50 weighting
|
||||
# 0.231 0.215 0.135 0.191 9.51 1.432 3.007 0.06082 24.87 3.477 24.13 2.802 0.3436 0.001127 -5.036 0.9232 0.0005874 c
|
||||
# 0.246 0.194 0.128 0.192 8.12 1.101 3.954 0.0817 22.83 3.967 19.83 1.779 0.3352 0.000895 -5.036 0.9238 0.0007973 d
|
||||
# 0.187 0.237 0.144 0.186 14.6 1.607 4.202 0.09439 39.27 3.726 31.26 2.634 0.273 0.001542 -5.036 0.8364 0.0008393 e
|
||||
|
||||
# 320 --epochs 2
|
||||
# 0.242 0.296 0.196 0.231 5.67 0.8541 4.286 0.1539 21.61 1.957 22.9 2.894 0.3689 0.001844 -4 0.913 0.000467 # ha 0.417 mAP @ epoch 100
|
||||
|
@ -70,9 +70,9 @@ def train(cfg,
|
|||
multi_scale = opt.multi_scale
|
||||
|
||||
if multi_scale:
|
||||
img_size_min = round(img_size / 32 / 1.5)
|
||||
img_size_max = round(img_size / 32 * 1.5)
|
||||
img_size = img_size_max * 32 # initiate with maximum multi_scale size
|
||||
img_sz_min = round(img_size / 32 / 1.5)
|
||||
img_sz_max = round(img_size / 32 * 1.5)
|
||||
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
|
||||
|
||||
# Configure run
|
||||
data_dict = parse_data_cfg(data_cfg)
|
||||
|
@ -216,10 +216,11 @@ def train(cfg,
|
|||
# Multi-Scale training TODO: short-side to 32-multiple https://github.com/ultralytics/yolov3/issues/358
|
||||
if multi_scale:
|
||||
if (i + nb * epoch) / accumulate % 10 == 0: # adjust (67% - 150%) every 10 batches
|
||||
img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
|
||||
# print('img_size = %g' % img_size)
|
||||
scale_factor = img_size / max(imgs.shape[-2:])
|
||||
imgs = F.interpolate(imgs, scale_factor=scale_factor, mode='bilinear', align_corners=False)
|
||||
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
|
||||
sf = img_size / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape
|
||||
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||
|
||||
# Plot images with bounding boxes
|
||||
if epoch == 0 and i == 0:
|
||||
|
|
Loading…
Reference in New Issue