This commit is contained in:
tomasz 2020-07-26 00:43:07 +02:00
parent eff752bba2
commit 43a5d4568a
24 changed files with 12336 additions and 152 deletions

View File

@ -633,14 +633,14 @@ activation=leaky
size=1 size=1
stride=1 stride=1
pad=1 pad=1
filters=72 filters=78
activation=linear activation=linear
[yolo] [yolo]
mask = 6,7,8 mask = 6,7,8
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145 anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
classes=19 classes=21
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7
@ -719,14 +719,14 @@ activation=leaky
size=1 size=1
stride=1 stride=1
pad=1 pad=1
filters=72 filters=78
activation=linear activation=linear
[yolo] [yolo]
mask = 3,4,5 mask = 3,4,5
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145 anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
classes=19 classes=21
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7
@ -806,14 +806,14 @@ activation=leaky
size=1 size=1
stride=1 stride=1
pad=1 pad=1
filters=72 filters=78
activation=linear activation=linear
[yolo] [yolo]
mask = 0,1,2 mask = 0,1,2
anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145 anchors=26,16, 19,45, 36,27, 54,32, 34,80, 60,49, 74,71, 96,105, 135,145
classes=19 classes=21
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7

View File

@ -640,7 +640,7 @@ activation=linear
[yolo] [yolo]
mask = 6,7,8 mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80 classes=19
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7
@ -726,7 +726,7 @@ activation=linear
[yolo] [yolo]
mask = 3,4,5 mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80 classes=19
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7
@ -813,7 +813,7 @@ activation=linear
[yolo] [yolo]
mask = 0,1,2 mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80 classes=19
num=9 num=9
jitter=.3 jitter=.3
ignore_thresh = .7 ignore_thresh = .7

View File

@ -1,6 +0,0 @@
classes=18
train=/home/michall/yolov3/data/widok01-11_train_labels.txt
valid=/home/michall/yolov3/data/widok01-11_test_labels.txt
names=/home/michall/yolov3/data/widok01-11.names
backup=backup/
eval=coco

Binary file not shown.

View File

@ -1,6 +0,0 @@
classes=19
train=/home/tomekb/yolov3/data/widok_01_19/widok_01_19_train_labels.txt
valid=/home/tomekb/yolov3/data/widok_01_19/widok_01_19_test_labels.txt
names=/home/tomekb/yolov3/data/widok_01_19/widok_01_19.names
backup=backup/
eval=coco

View File

@ -0,0 +1,6 @@
classes=21
train=./data/widok_01_21/widok_01_21_train_labels.txt
valid=./data/widok_01_21/widok_01_21_test_labels.txt
names=./data/widok_01_21/widok_01_21.names
backup=backup/
eval=coco

View File

@ -0,0 +1,21 @@
1. rower
2. motocykl
3. osobowy
4. osobowy pickup
5. osobowy dostawczy
6. osobowy van 7-9
7. dostawczy blaszak / BUS sredni dostawczy
8. dostawczy zabudowany
9. dostawczy pickup (w tym pomoc drog.)
10. dostawczy VAN (osobowy) / autobus maly 10-24 / BUS sredni osobowy
11. autobus miejski / autobus turystyczny i inny
12. ciezarowy pow. 3,5t zabudowany / ciezarowy z widoczna przyczepa
13. ciezarowy pow. 3,5t otwarty (w tym duzy holownik)
14. ciezarowy pow. 3,5t inny (wanna, gruszka, dzwig itp.)
15. ciagnik siodlowy z widoczna naczepa / ciagnik siodlowy bez naczepy
16. inne pojazdy silnikowe / camper / woz strazacki / ciagnik roliczy, koparka, spychacz
17. przyczepa
18. BUS-karetka/policja
19. BUS brygadowka
20. BUS sredni dostawczy
21. BUS sredni osobowy

View File

@ -0,0 +1,16 @@
1. rower
2. motocykl
3. osobowy
4. osobowy pickup
5. osobowy dostawczy
6. osobowy van 7-9
7. dostawczy blaszak / BUS sredni dostawczy
8. dostawczy zabudowany
9. dostawczy pickup (w tym pomoc drog.)
10. dostawczy VAN (osobowy) / autobus maly 10-24 / BUS sredni osobowy
11. autobus miejski / autobus turystyczny i inny
12. ciezarowy pow. 3,5t zabudowany / ciezarowy z widoczna przyczepa
13. ciezarowy pow. 3,5t otwarty / (w tym duzy holownik)
14. ciezarowy pow. 3,5t inny (wanna, gruszka, dzwig itp.)
15. ciagnik siodlowy z widoczna naczepa /
ciagnik siodlowy bez naczepy

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -133,7 +133,7 @@ def detect(save_img=False):
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# Print time (inference + NMS) # Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1)) #print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results # Stream results
if view_img: if view_img:
@ -162,7 +162,7 @@ def detect(save_img=False):
if platform == 'darwin': # MacOS if platform == 'darwin': # MacOS
os.system('open ' + save_path) os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0)) #print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__': if __name__ == '__main__':
@ -186,7 +186,7 @@ if __name__ == '__main__':
opt = parser.parse_args() opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file opt.cfg = check_file(opt.cfg) # check file
opt.names = check_file(opt.names) # check file opt.names = check_file(opt.names) # check file
print(opt) #print(opt)
with torch.no_grad(): with torch.no_grad():
detect(True) detect(True)

View File

@ -1,11 +1,11 @@
train: train:
epochs: 1200 epochs: 200
batch-size: 3 batch-size: 14 #
cfg: ./cfg/yolov3-spp-19cls.cfg cfg: ./cfg/yolov3-spp-19cls.cfg
data: ./data/widok_01_19.data data: ./data/widok_01_19.data
multi-scale: false multi-scale: false
img-size: '512 1920' img-size: '768 1280'
rect: true rect: false
resume: false resume: false
nosave: false nosave: false
notest: false notest: false
@ -16,7 +16,8 @@ train:
device: 1 device: 1
adam: true adam: true
single-cls: false single-cls: false
save-every-nth-epoch: 50 snapshot-every: 50
freeze-layers: true
# inne hiperparametry # inne hiperparametry
other-hyps: other-hyps:
@ -43,7 +44,7 @@ experiments:
dir: ./experiments dir: ./experiments
detect: detect:
source: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_test_labels.txt source: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_test_labels.txt
test-img-size: 1920 test-img-size: 1024
conf-thres: 0.3 conf-thres: 0.3
iou-thres: 0.6 iou-thres: 0.6
classes: classes:

View File

@ -1,29 +1,7 @@
import yaml import yaml
class Args:
def get_args_string(self) -> str:
string = ''
for key, value in self.__dict__.items():
if not isinstance(value, Configuration.Train.OtherHyps) and value is not None:
if key == 'img-size':
string += f' --{key} {value.split(" ")[0]} {value.split(" ")[1]}'
elif type(value) == bool:
if value:
string += f" --{key}"
else:
continue
elif type(value) in [int, str] and value != '':
string += f' --{key} {value}'
else:
raise Exception(f"Cannot parse argument {key} {value}")
return string
class Configuration: class Configuration:
class Train(Args): class Train:
class OtherHyps: class OtherHyps:
def __init__(self, config_file) -> None: def __init__(self, config_file) -> None:
@ -36,28 +14,55 @@ class Configuration:
if key != 'other-hyps': if key != 'other-hyps':
self.__dict__[key] = value self.__dict__[key] = value
class Experiments(Args): class Experiments:
def __init__(self, config_file) -> None: def __init__(self, config_file) -> None:
for key, value in config_file['experiments'].items(): for key, value in config_file['experiments'].items():
self.__dict__[key] = value self.__dict__[key] = value
class Detect(Args): class Detect:
def __init__(self, config_file) -> None: def __init__(self, config_file) -> None:
for key, value in config_file['detect'].items(): for key, value in config_file['detect'].items():
self.__dict__[key] = value self.__dict__[key] = value
class ConfussionMatrix(Args): class ConfussionMatrix:
def __init__(self, config_file) -> None: def __init__(self, config_file) -> None:
for key, value in config_file['confussion-matrix'].items(): for key, value in config_file['confussion-matrix'].items():
self.__dict__[key] = value self.__dict__[key] = value
def __init__(self, config_path='/home/tomekb/yolov3/our_scripts/config_bayes.yml') -> None: class Bayes:
def __init__(self, config_file) -> None:
for key, value in config_file['bayes'].items():
self.__dict__[key] = value
def __init__(self, config_path='./config_bayes.yml') -> None:
self.config_path = config_path self.config_path = config_path
file = yaml.load(open(config_path, 'r'), Loader=yaml.Loader) file = yaml.load(open(config_path, 'r'), Loader=yaml.Loader)
self.train = self.Train(file) self.train = self.Train(file)
self.experiments = self.Experiments(file) self.experiments = self.Experiments(file)
self.detect = self.Detect(file) self.detect = self.Detect(file)
self.confussion_matrix = self.ConfussionMatrix(file) self.confussion_matrix = self.ConfussionMatrix(file)
self.bayes = self.Bayes(file)
def get_bayes_bounds(self) -> list:
result = []
dicts = {**self.train.__dict__, **self.train.other_hyps.__dict__, **self.detect.__dict__}
for key, value in dicts.items():
if type(value) not in [None, Configuration.Train.OtherHyps] and type(value) == dict:
if value['type'] == 'continuous': # continous value
val = (value['min'], value['max'])
item = {'name': key, 'type': value['type'], 'domain': val}
elif value['type'] == 'discrete' and 'step' in value:
val = tuple(n for n in range(value['min'], value['max'], value['step']))
item = {'name': key, 'type': value['type'], 'domain': val}
elif value['type'] == 'discrete': # discrete values without step
val = tuple(n for n in value['values'])
item = {'name': key, 'type': value['type'], 'domain': val}
else: # unknown type
raise Exception("Invalid type", value['type'])
result.append(item)
return result
if __name__ == '__main__': if __name__ == '__main__':
config = Configuration() config = Configuration()

View File

@ -1,32 +1,47 @@
bayes:
iterations: 2
train: train:
epochs: 100 epochs:
type: discrete
values: [10]
batch-size: batch-size:
type: discrete type: discrete
values: 1,2,3,4 #values: [128]
cfg: ./cfg/yolov3-spp-19cls.cfg min: 1
data: ./data/widok_01_19.data max: 5
step: 1
cfg: ./cfg/yolov3-spp-21cls.cfg
data: ./data/widok_01_21.data
multi-scale: multi-scale:
type: discrete type: discrete
values: true, false values: [true, false]
img-size: img-size-start:
type: discrete type: discrete
values: (512, 1280),(576, 1280),(640, 1280),(704, 1280),(768, 1280),(832,1280),(960, 1280),(1024, 1280) # trzeba wziąć pod uwagę wszystkie kombinacje i warunek img-size-min < img-size_max których jest cała masa min: 512
rect: false max: 1088
step: 64
img-size-end:
type: discrete type: discrete
values: true,false min: 512
max: 1088
step: 64
rect:
type: discrete
values: [false]
resume: false resume: false
nosave: false nosave: false
notest: false notest: false
evolve: false evolve: false
bucket: bucket:
cache-images: false cache-images: false
weights: /home/tomekb/yolov3/weights/yolov3-spp-ultralytics.pt weights: ./weights/yolov3-spp-ultralytics.pt
device: 1 device: 1
adam: true adam:
type: discrete
values: [true]
single-cls: false single-cls: false
snapshot-every: 50 snapshot-every:
freeze-layers: true freeze-layers: true
other-hyps: other-hyps:
giou: giou:
type: continuous type: continuous
@ -52,8 +67,14 @@ train:
type: continuous type: continuous
min: 0.0 min: 0.0
max: 1.0 max: 1.0
lr0: 0.01 # initial learning rate (SGD=5E-3 Adam=5E-4) # trzeba wziąć pod uwage zależność lr0 < lrf dlatego nie zmieniam lr0:
lrf: 0.0005 # final learning rate (with cos scheduler) type: continuous
min: 0.000001
max: 0.1
lrf:
type: continuous
min: 0.000001
max: 0.1
momentum: momentum:
type: continuous type: continuous
min: 0.0 min: 0.0
@ -70,7 +91,7 @@ train:
type: continuous type: continuous
min: 0.0 min: 0.0
max: 1.0 max: 1.0
hsv_s: 0.678 hsv_s:
type: continuous type: continuous
min: 0.0 min: 0.0
max: 1.0 max: 1.0
@ -97,10 +118,12 @@ train:
experiments: experiments:
dir: ./experiments dir: ./experiments
detect: detect:
source: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_test_labels.txt source: ./data/widok_01_21/widok_01_21_test_labels.txt
test-img-size: test-img-size:
type: discrete type: discrete
values: 512,576,640,704,768,832,896,960,1024,1088,1152,1216,1280, min: 512
max: 1088
step: 64
conf-thres: conf-thres:
type: continuous type: continuous
min: 0.0 min: 0.0
@ -113,4 +136,4 @@ detect:
agnostic-nms: agnostic-nms:
augment: augment:
confussion-matrix: confussion-matrix:
labels-dir: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_labels labels-dir: ./data/widok_01_21/widok_01_21_labels

View File

@ -158,10 +158,10 @@ async function main() {
tsvRows.push([ names[row], ...(summaryRows.map(r => summaryPart[r] && (summaryPart[r] / sum).toFixed(2)))].join('\t')) tsvRows.push([ names[row], ...(summaryRows.map(r => summaryPart[r] && (summaryPart[r] / sum).toFixed(2)))].join('\t'))
} }
const allLabeled = rows.slice(0, -1).map(r => summary.sum[r]).reduce((a, b) => a + b, 0) const allDetected = rows.slice(0, -1).map(r => summary.sum[r]).reduce((a, b) => a + b, 0)
const allDetected = rows.slice(0, -1).map(r => summary[r].sum).reduce((a, b) => a + b, 0) const allLabeled = rows.slice(0, -1).map(r => summary[r].sum).reduce((a, b) => a + b, 0)
const falseNegatives = rows.slice(0, -1).map(r => summary.n[r] || 0).reduce((a, b) => a + b, 0) const falsePositives = rows.slice(0, -1).map(r => summary.n[r] || 0).reduce((a, b) => a + b, 0)
const falsePositives = rows.slice(0, -1).map(r => summary[r].n || 0).reduce((a, b) => a + b, 0) const falseNegatives = rows.slice(0, -1).map(r => summary[r].n || 0).reduce((a, b) => a + b, 0)
const right = rows.slice(0, -1).map(r => summary[r][r] || 0).reduce((a, b) => a + b, 0) const right = rows.slice(0, -1).map(r => summary[r][r] || 0).reduce((a, b) => a + b, 0)
const mistakes = rows.slice(0, -1).map(a => rows.slice(0, -1).map(b => (a!=b && summary[a][b]) || 0).reduce((a, b) => a + b, 0)).reduce((a, b) => a + b, 0) const mistakes = rows.slice(0, -1).map(a => rows.slice(0, -1).map(b => (a!=b && summary[a][b]) || 0).reduce((a, b) => a + b, 0)).reduce((a, b) => a + b, 0)

View File

@ -46,7 +46,7 @@ def map_class_name_to_id(class_name, xml_document, class_distribution):
elif class_name in ['6. osobowy van 7-9']: elif class_name in ['6. osobowy van 7-9']:
class_distribution[5] += 1 class_distribution[5] += 1
return 5 return 5
elif class_name in ['7. dostawczy blaszak', '27. BUS sredni dostawczy']: elif class_name in ['7. dostawczy blaszak']:
class_distribution[6] += 1 class_distribution[6] += 1
return 6 return 6
elif class_name in ['8. dostawczy zabudowany']: elif class_name in ['8. dostawczy zabudowany']:
@ -55,7 +55,7 @@ def map_class_name_to_id(class_name, xml_document, class_distribution):
elif class_name in ['9. dostawczy pickup (w tym pomoc drog.)']: elif class_name in ['9. dostawczy pickup (w tym pomoc drog.)']:
class_distribution[8] += 1 class_distribution[8] += 1
return 8 return 8
elif class_name in ['10. dostawczy VAN (osobowy)', '11. autobus maly 10-24', '28. BUS sredni osobowy']: elif class_name in ['10. dostawczy VAN (osobowy)', '11. autobus maly 10-24']:
class_distribution[9] += 1 class_distribution[9] += 1
return 9 return 9
elif class_name in ['12. autobus miejski', '13. autobus turystyczny i inny']: elif class_name in ['12. autobus miejski', '13. autobus turystyczny i inny']:
@ -85,13 +85,19 @@ def map_class_name_to_id(class_name, xml_document, class_distribution):
elif class_name in ['26. BUS brygadowka']: elif class_name in ['26. BUS brygadowka']:
class_distribution[18] += 1 class_distribution[18] += 1
return 18 return 18
elif class_name in ['27. BUS sredni dostawczy']:
class_distribution[19] += 1
return 19
elif class_name in ['28. BUS sredni osobowy']:
class_distribution[20] += 1
return 20
else: else:
raise Exception('Unknown Class ', xml_document, class_name) raise Exception('Unknown Class ', xml_document, class_name)
#print(f'{xml_document.split("/")[-1]} {class_name}') #print(f'{xml_document.split("/")[-1]} {class_name}')
def generate_txt_from_xml(): def generate_txt_from_xml():
class_distribution = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] class_distribution = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0]
filepaths = glob(join(annotations , '*.xml')) filepaths = glob(join(annotations , '*.xml'))

View File

@ -1,4 +1,3 @@
import argparse
import datetime import datetime
import glob import glob
import io import io
@ -12,41 +11,44 @@ from config import Configuration
def call_training_script(config): def call_training_script(config):
cmd = '/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/train.py ' cmd = '/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/train.py '
cmd += config.train.get_args_string() cmd += f"--experiment-dir {config.experiments.dir}"
cmd += config.train.get_args_string() # getting rest of train arguments
print("_______ CALLING TRAINING SCRIPT _______") print("_______ CALLING TRAINING SCRIPT _______")
print(cmd) print(cmd)
os.chdir('..') os.chdir('..') # change to project root directory
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of training process to console for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of training process to console
print(line) print(line)
return cmd return cmd
def move_training_results_to_experiments_dir(config): def move_training_results_to_experiments_dir(config):
training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) #creating directory accordint to pattern eg: 2020-06-30_17-52-19
print("_______ CALLING MOVING RESULTS _______") print("_______ CALLING MOVING RESULTS _______")
print(f"MOVING RESUTLS TO {training_results_dir_path}") print(f"MOVING RESUTLS TO {training_results_dir_path}")
os.mkdir(training_results_dir_path) os.mkdir(training_results_dir_path)
weights_path = os.path.join(training_results_dir_path, 'best.pt') weights_path = os.path.join(training_results_dir_path, 'best.pt')
shutil.move('/home/tomekb/yolov3/weights/best.pt', weights_path) #move best weights shutil.move('/home/tomekb/yolov3/weights/best.pt', weights_path) # move best weights
names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file
names_file_name = ntpath.basename(names_path) names_file_name = ntpath.basename(names_path)
experiment_names_path = os.path.join(training_results_dir_path, names_file_name) experiment_names_path = os.path.join(training_results_dir_path, names_file_name)
shutil.copy(names_path, experiment_names_path) # copy names to created experiment dir with training results shutil.copy(names_path, experiment_names_path) # copy names file from *.data file to created experiment dir with training results
tensorboard_dir = './runs' tensorboard_dir = './runs'
last_modified_tensorboard_dir = max(glob.glob(os.path.join(tensorboard_dir, '*/')), key=os.path.getmtime) last_modified_tensorboard_dir = max(glob.glob(os.path.join(tensorboard_dir, '*/')), key=os.path.getmtime)
shutil.move(last_modified_tensorboard_dir, os.path.join(training_results_dir_path)) #saving related tensorboard dir shutil.move(last_modified_tensorboard_dir, os.path.join(training_results_dir_path)) # saving related tensorboard dir
shutil.copy2(config.config_path, training_results_dir_path) #copying configuration yaml
#for test purposes only shutil.copy2(config.config_path, training_results_dir_path) # copying configuration yaml
#shutil.copy2('/home/tomekb/yolov3/experiments/1/best.pt', training_results_dir_path)
# for test purposes only
# shutil.copy2('/home/tomekb/yolov3/experiments/1/best.pt', training_results_dir_path)
return weights_path, experiment_names_path, training_results_dir_path return weights_path, experiment_names_path, training_results_dir_path
@ -69,11 +71,10 @@ def call_detection_script(config, weights_path, names_path, dir):
cmd = " ".join(cmd.split()) cmd = " ".join(cmd.split())
print("_______ CALLING DETECTION SCRIPT _______") print("_______ CALLING DETECTION SCRIPT _______")
print(cmd) print(cmd)
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
print(line) print(line)
@ -84,7 +85,7 @@ def call_generate_confussion_matrix(detect_output_dir, config, names_path, train
labels_dir = getattr(config.confussion_matrix, 'labels-dir') labels_dir = getattr(config.confussion_matrix, 'labels-dir')
cmd = f"node ./our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {train_results_dir}/confussion-matrix.tsv" cmd = f"node ./our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {train_results_dir}/confussion-matrix.tsv"
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
print("_______ CALLING CONFUSSION MATRIX SCRIPT _______") print("_______ CALLING CONFUSSION MATRIX SCRIPT _______")
print(cmd) print(cmd)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
@ -95,6 +96,6 @@ if __name__ == '__main__':
config = Configuration() config = Configuration()
train_cmd = call_training_script(config) train_cmd = call_training_script(config)
weights_path, names_path,train_results_dir = move_training_results_to_experiments_dir(config) weights_path, names_path, train_results_dir = move_training_results_to_experiments_dir(config)
detect_output_dir = call_detection_script(config, weights_path, names_path,train_results_dir) detect_output_dir = call_detection_script(config, weights_path, names_path, train_results_dir)
call_generate_confussion_matrix(detect_output_dir, config, names_path,train_results_dir) call_generate_confussion_matrix(detect_output_dir, config, names_path, train_results_dir)

View File

@ -1,31 +1,56 @@
import datetime import datetime
import glob import glob
import io
import ntpath import ntpath
import os import os
import shutil import shutil
import subprocess import traceback
from .config import Configuration import GPyOpt
import numpy as np
from config_bayes import Configuration
from utils import call_subprocess, get_values_from_conff_matrix
config = Configuration()
date_string = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
bayes_params_file = open(os.path.join(config.experiments.dir, f"{date_string}_bayes_params.txt"), 'a+')
def call_training_script(config): def call_training_script(gaussian_hyps):
cmd = '/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/train.py ' cmd = 'python-u /home/tomekb/yolov3/train.py'
cmd += f"--experiment-dir {config.experiments.dir}" cmd += ' --epochs ' + gaussian_hyps['epochs'].__str__()
cmd += config.train.get_args_string() # getting rest of train arguments cmd += ' --batch-size ' + gaussian_hyps['batch-size'].__str__()
cmd += ' --cfg ' + config.train.cfg.__str__()
cmd += ' --data ' + config.train.data.__str__()
cmd += ' --multi-scale ' if gaussian_hyps['multi-scale'] else ""
cmd += ' --img-size ' + gaussian_hyps['img-size']
cmd += ' --rect ' if gaussian_hyps['rect'] else ""
cmd += ' --weights ' + config.train.weights.__str__()
cmd += ' --device ' + config.train.device.__str__()
cmd += ' --adam ' if gaussian_hyps['adam'] else ""
cmd += ' --freeze-layers ' if getattr(config.train, "freeze-layers") else ""
# cmd += ' --snapshot-every ' if getattr(config.train, "snapshot-every") else ""
cmd += ' --experiment-dir ' + config.experiments.dir.__str__()
train_hyps = dict(
(key, gaussian_hyps[key]) for idx, (key, _) in enumerate(gaussian_hyps.items()) if idx in range(6, 24))
cmd += f' --hyp \"{train_hyps}\"'
print("_______ CALLING TRAINING SCRIPT _______") print("_______ CALLING TRAINING SCRIPT _______")
print(cmd) print(cmd)
os.chdir('..') # change to project root directory dir_path = os.path.dirname(os.path.realpath(__file__))
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) os.chdir(os.path.join(dir_path, '..')) # change to project root directory
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of training process to console
print(line) call_subprocess(cmd)
return cmd return cmd
def move_training_results_to_experiments_dir(config): def move_training_results_to_experiments_dir():
training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) #creating directory accordint to pattern eg: 2020-06-30_17-52-19 training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime(
'%Y-%m-%d_%H-%M-%S')) # creating directory accordint to pattern eg: 2020-06-30_17-52-19
print("_______ CALLING MOVING RESULTS _______") print("_______ CALLING MOVING RESULTS _______")
print(f"MOVING RESUTLS TO {training_results_dir_path}") print(f"MOVING RESUTLS TO {training_results_dir_path}")
@ -38,22 +63,26 @@ def move_training_results_to_experiments_dir(config):
names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file
names_file_name = ntpath.basename(names_path) names_file_name = ntpath.basename(names_path)
experiment_names_path = os.path.join(training_results_dir_path, names_file_name) experiment_names_path = os.path.join(training_results_dir_path, names_file_name)
shutil.copy(names_path, experiment_names_path) # copy names file from *.data file to created experiment dir with training results shutil.copy(names_path,
experiment_names_path) # copy names file from *.data file to created experiment dir with training results
tensorboard_dir = './runs'
last_modified_tensorboard_dir = max(glob.glob(os.path.join(tensorboard_dir, '*/')), key=os.path.getmtime)
shutil.move(last_modified_tensorboard_dir, os.path.join(training_results_dir_path)) # saving related tensorboard dir
tensorboard_dir = '/home/tomekb/yolov3/runs'
tensorboard_events_files = glob.glob(os.path.join(tensorboard_dir, '*'))
last_modified_events_file = max(tensorboard_events_files, key=os.path.getmtime)
shutil.move(last_modified_events_file,
os.path.join(training_results_dir_path)) # saving related tensorboard dir
shutil.copy2(config.config_path, training_results_dir_path) # copying configuration yaml shutil.copy2(config.config_path, training_results_dir_path) # copying configuration yaml
# for test purposes only # for test purposes only
# shutil.copy2('/home/tomekb/yolov3/experiments/1/best.pt', training_results_dir_path) # TODO CHANGE ME AFTER TESTS
shutil.copy2('/home/tomekb/yolov3/experiments/yolov3-spp-100-epochs-freeze-layers/best.pt',
training_results_dir_path)
return weights_path, experiment_names_path, training_results_dir_path return weights_path, experiment_names_path, training_results_dir_path
def call_detection_script(config, weights_path, names_path, dir): def call_detection_script(gaussian_hyps, weights_path, names_path, dir):
detect_output_dir = os.path.join(dir, 'output') detect_output_dir = os.path.join(dir, 'output')
cmd = f"""/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/detect.py cmd = f"""/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/detect.py
--cfg {config.train.cfg} --cfg {config.train.cfg}
@ -61,41 +90,101 @@ def call_detection_script(config, weights_path, names_path, dir):
--output {detect_output_dir} --output {detect_output_dir}
--names {names_path} --names {names_path}
--weights {weights_path} --weights {weights_path}
--test-img-size {getattr(config.detect, 'test-img-size')} --test-img-size {gaussian_hyps['test-img-size']}
--conf-thres {getattr(config.detect, 'conf-thres')} --conf-thres {gaussian_hyps['conf-thres']}
--iou-thres {getattr(config.detect, 'iou-thres')} --iou-thres {gaussian_hyps['iou-thres']}
--save-txt""" --save-txt"""
cmd += " --agnostic-nms" if getattr(config.detect, 'agnostic-nms') else ""
cmd += " --agument" if getattr(config.detect, 'augment') else ""
cmd += f" --device {config.train.device}" if config.train.device else "" cmd += f" --device {config.train.device}" if config.train.device else ""
cmd = " ".join(cmd.split()) cmd = " ".join(cmd.split())
print("_______ CALLING DETECTION SCRIPT _______") print("_______ CALLING DETECTION SCRIPT _______")
print(cmd) print(cmd)
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) call_subprocess(cmd)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
print(line)
return detect_output_dir return detect_output_dir
def call_generate_confussion_matrix(detect_output_dir, config, names_path, train_results_dir): def call_generate_confussion_matrix(detect_output_dir, names_path, train_results_dir):
labels_dir = getattr(config.confussion_matrix, 'labels-dir') labels_dir = getattr(config.confussion_matrix, 'labels-dir')
conff_matrix_path = os.path.join(train_results_dir, 'confussion-matrix.tsv')
cmd = f"node ./our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {train_results_dir}/confussion-matrix.tsv" cmd = f"node /home/tomekb/yolov3/our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {conff_matrix_path}"
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
print("_______ CALLING CONFUSSION MATRIX SCRIPT _______") print("_______ CALLING CONFUSSION MATRIX SCRIPT _______")
print(cmd) print(cmd)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console call_subprocess(cmd)
print(line) return conff_matrix_path
def yolov3(x):
bayes_hyps = {
'epochs': int(x[:, 0]),
'batch-size': int(x[:, 1]),
'multi-scale': bool(x[:, 2]),
'img-size': f"{int(x[:, 3])} {int(x[:, 4])}",
'rect': bool(x[:, 5]),
'adam': bool(x[:, 6]),
'giou': float(x[:, 7]), # train hyps start index
'cls': float(x[:, 8]),
'cls_pw': float(x[:, 9]),
'obj': float(x[:, 10]),
'obj_pw': float(x[:, 11]),
'iou_t': float(x[:, 12]),
'lr0': float(x[:, 13]),
'lrf': float(x[:, 14]),
'momentum': float(x[:, 15]),
'weight_decay': float(x[:, 16]),
'fl_gamma': float(x[:, 17]),
'hsv_h': float(x[:, 18]),
'hsv_s': float(x[:, 19]),
'hsv_v': float(x[:, 20]),
'degrees': float(x[:, 21]),
'translate': float(x[:, 22]),
'scale': float(x[:, 23]),
'shear': float(x[:, 24]), # train hyps end index
'test-img-size': int(x[:, 25]),
'conf-thres': float(x[:, 26]),
'iou-thres': float(x[:, 27])
}
line = ""
try:
call_training_script(bayes_hyps)
weights_path, names_path, train_results_dir = move_training_results_to_experiments_dir()
detect_output_dir = call_detection_script(bayes_hyps, weights_path, names_path, train_results_dir)
conf_matrix_path = call_generate_confussion_matrix(detect_output_dir, names_path, train_results_dir)
y_dict = get_values_from_conff_matrix(conf_matrix_path)
# tutaj wzór na wyliczanie funkcji
y_val = 1 - ((y_dict['match'] * 10 - y_dict['false positives'] * 3) / y_dict['mistakes'])
# zapisywanie do pliku zadeklarowanego globalnie
line = "\t".join([bayes_hyps.__str__(), str(y_val)])
bayes_params_file.writelines([line, '\n'])
return y_val
except:
tb = traceback.format_exc()
print("An error occured during running training-detect-confussion process \n", tb)
print("Returning 1 from current bayessian iteration")
line = "\t".join([bayes_hyps.__str__(), str(1)])
return 1
finally:
bayes_params_file.writelines([line, '\n'])
# uruchamiać z
if __name__ == '__main__': if __name__ == '__main__':
config = Configuration()
train_cmd = call_training_script(config) bounds = config.get_bayes_bounds()
weights_path, names_path, train_results_dir = move_training_results_to_experiments_dir(config)
detect_output_dir = call_detection_script(config, weights_path, names_path, train_results_dir) # for b in bounds:
call_generate_confussion_matrix(detect_output_dir, config, names_path, train_results_dir) # print(b)
# tutaj będzie wczytywanie z poprzednich eksperymentów plik bayes_params
X = None
Y = None
bayes_optimizer = GPyOpt.methods.BayesianOptimization(f=yolov3, domain=bounds, X=X, Y=Y, verbosity=True,
initial_design_numdata=2)
bayes_optimizer.run_optimization(config.bayes.iterations, verbosity=True)
bayes_params_file.close()

View File

@ -0,0 +1,55 @@
import io
import subprocess
def call_subprocess(cmd):
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
error = False
for process_line_output in io.TextIOWrapper(process.stdout,
encoding="utf-8"): # print output of training process to console
if 'Traceback' in process_line_output:
error = True
print(process_line_output)
if error:
raise RuntimeError("An error occured during calling subprocess")
def get_values_from_conff_matrix(path):
lines = open(path, 'r').readlines()[:7]
d = {}
for l in lines:
key, value, *_ = l.split("\t")
d.update({key.replace(":", ""): int(value)})
return d
def get_bayes_params_as_dict(x):
return {
'epochs': int(x[:, 0]),
'batch-size': int(x[:, 1]),
'multi-scale': bool(x[:, 2]),
'img-size': f"{int(x[:, 3])} {int(x[:, 4])}",
'rect': bool(x[:, 5]),
'adam': bool(x[:, 6]),
'giou': float(x[:, 7]), # train hyps start index
'cls': float(x[:, 8]),
'cls_pw': float(x[:, 9]),
'obj': float(x[:, 10]),
'obj_pw': float(x[:, 11]),
'iou_t': float(x[:, 12]),
'lr0': float(x[:, 13]),
'lrf': float(x[:, 14]),
'momentum': float(x[:, 15]),
'weight_decay': float(x[:, 16]),
'fl_gamma': float(x[:, 17]),
'hsv_h': float(x[:, 18]),
'hsv_s': float(x[:, 19]),
'hsv_v': float(x[:, 20]),
'degrees': float(x[:, 21]),
'translate': float(x[:, 22]),
'scale': float(x[:, 23]),
'shear': float(x[:, 24]), # train hyps end index
'test-img-size': int(x[:, 25]),
'conf-thres': float(x[:, 26]),
'iou-thres': float(x[:, 27])
}

View File

@ -10,6 +10,7 @@ from models import *
from utils.datasets import * from utils.datasets import *
from utils.utils import * from utils.utils import *
from our_scripts.config import Configuration from our_scripts.config import Configuration
import ast
mixed_precision = True mixed_precision = True
@ -117,7 +118,6 @@ def train(hyp):
best_fitness = 0.0 best_fitness = 0.0
attempt_download(weights) attempt_download(weights)
if weights.endswith('.pt'): # pytorch format if weights.endswith('.pt'): # pytorch format
print("LOADIN MODEL")
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc. # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
ckpt = torch.load(weights, map_location=device) ckpt = torch.load(weights, map_location=device)
@ -364,8 +364,9 @@ def train(hyp):
'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(), 'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()} 'optimizer': None if final_epoch else optimizer.state_dict()}
if epoch % opt.save_every_nth_epoch == 0: if opt.snapshot_every and epoch % opt.snapshot_every == 0 :
torch.save(chkpt, f'yolo_{epoch}.pt') saving_path = os.path.join(opt.experiment_dir, f'weights_{epoch}.pt')
torch.save(ckpt, saving_path)
# Save last, best and delete # Save last, best and delete
torch.save(ckpt, last) torch.save(ckpt, last)
if (best_fitness == fi) and not final_epoch: if (best_fitness == fi) and not final_epoch:
@ -416,8 +417,14 @@ if __name__ == '__main__':
parser.add_argument('--adam', action='store_true', help='use adam optimizer') parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--freeze-layers', action='store_true', help='Freeze non-output layers') parser.add_argument('--freeze-layers', action='store_true', help='Freeze non-output layers')
parser.add_argument('--save-every-nth-epoch', type=int, help='Saving every n-th epoth')
# parametry dodane na cele projektu wykrywania aut
parser.add_argument('--snapshot-every', type=int, help='Saving every n-th state of model weights')
parser.add_argument('--experiment-dir', type=str, help='Directory for experiments')
parser.add_argument('--hyp', type=str, help='String that represents dictionary with hyperparameters ')
opt = parser.parse_args() opt = parser.parse_args()
#print(opt)
#opt.weights = last if opt.resume and not opt.weights else opt.weights #opt.weights = last if opt.resume and not opt.weights else opt.weights
#check_git_status() #check_git_status()
opt.cfg = check_file(opt.cfg) # check file opt.cfg = check_file(opt.cfg) # check file
@ -431,9 +438,10 @@ if __name__ == '__main__':
# scale hyp['obj'] by img_size (evolved at 320) # scale hyp['obj'] by img_size (evolved at 320)
# hyp['obj'] *= opt.img_size[0] / 320. # hyp['obj'] *= opt.img_size[0] / 320.
#overriding global hyp variable with our bayessian hyps
hyp = Configuration().train.other_hyps.__dict__ hyp = ast.literal_eval(opt.hyp)
#print('### TRAIN HYPERPARAMETERS ###')
#print(hyp)
tb_writer = None tb_writer = None
if not opt.evolve: # Train normally if not opt.evolve: # Train normally

View File

@ -553,6 +553,7 @@ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# Histogram equalization # Histogram equalization
# if random.random() < 0.2: # if random.random() < 0.2:
# for i in range(3): # for i in range(3):