From 4317335795c49c2a6e4ecd6fb3687edc74a6a9b4 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sun, 8 Mar 2020 11:43:05 -0700 Subject: [PATCH] updates --- test.py | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/test.py b/test.py index c0034779..b1d9819d 100644 --- a/test.py +++ b/test.py @@ -17,7 +17,6 @@ def test(cfg, iou_thres=0.6, # for nms save_json=False, single_cls=False, - profile=False, model=None, dataloader=None): # Initialize/load model and set device @@ -182,11 +181,6 @@ def test(cfg, for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i])) - # Print profile results - if profile: - t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) - print('Profile results: %.1f/%.1f/%.1f ms inference/NMS/total per image' % t) - # Save JSON if save_json and map and len(jdict): imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files] @@ -210,6 +204,11 @@ def test(cfg, cocoEval.summarize() mf1, map = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5) + # Print speeds + if verbose: + t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (img_size, img_size, batch_size) # tuple + print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) + # Return results maps = np.zeros(nc) + map for i, c in enumerate(ap_class): @@ -230,7 +229,6 @@ if __name__ == '__main__': parser.add_argument('--task', default='test', help="'test', 'study', 'benchmark'") parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') - parser.add_argument('--profile', action='store_true', help='profile inference and NMS times') opt = parser.parse_args() opt.save_json = opt.save_json or any([x in opt.data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) print(opt) @@ -245,8 +243,7 @@ if __name__ == '__main__': opt.conf_thres, opt.iou_thres, opt.save_json, - opt.single_cls, - opt.profile) + opt.single_cls) elif opt.task == 'benchmark': # mAPs at 320-608 at conf 0.5 and 0.7 y = []