GIoU to default
This commit is contained in:
parent
b649a95c9a
commit
429bd3b8a9
37
train.py
37
train.py
|
@ -11,38 +11,24 @@ from models import *
|
|||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
|
||||
# 0.149 0.241 0.126 0.156 6.85 1.008 1.421 0.07989 16.94 6.215 10.61 4.272 0.251 0.001 -4 0.9 0.0005 320 64-1 giou
|
||||
# 0.111 0.27 0.132 0.131 3.96 1.276 0.3156 0.1425 21.21 6.224 11.59 8.83 0.376 0.001 -4 0.9 0.0005
|
||||
hyp = {'giou': 1.008, # giou loss gain
|
||||
# 0.0945 0.279 0.114 0.131 25 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320
|
||||
# 0.149 0.241 0.126 0.156 6.85 1.008 1.421 0.07989 16.94 6.215 10.61 4.272 0.251 0.001 -4 0.9 0.0005 320 giou
|
||||
# 0.111 0.27 0.132 0.131 3.96 1.276 0.3156 0.1425 21.21 6.224 11.59 8.83 0.376 0.001 -4 0.9 0.0005 320
|
||||
# 0.114 0.287 0.144 0.132 7.1 1.666 4.046 0.1364 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False
|
||||
hyp = {'giou': 1.666, # giou loss gain
|
||||
'xy': 4.062, # xy loss gain
|
||||
'wh': 0.1845, # wh loss gain
|
||||
'cls': 16.94, # cls loss gain
|
||||
'cls_pw': 6.215, # cls BCELoss positive_weight
|
||||
'obj': 10.61, # obj loss gain
|
||||
'obj_pw': 4.272, # obj BCELoss positive_weight
|
||||
'iou_t': 0.251, # iou target-anchor training threshold
|
||||
'cls': 42.6, # cls loss gain
|
||||
'cls_pw': 3.34, # cls BCELoss positive_weight
|
||||
'obj': 12.61, # obj loss gain
|
||||
'obj_pw': 8.338, # obj BCELoss positive_weight
|
||||
'iou_t': 0.2705, # iou target-anchor training threshold
|
||||
'lr0': 0.001, # initial learning rate
|
||||
'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
|
||||
'momentum': 0.90, # SGD momentum
|
||||
'weight_decay': 0.0005} # optimizer weight decay
|
||||
|
||||
|
||||
# 0.0945 0.279 0.114 0.131 25 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320 64-1
|
||||
# 0.112 0.265 0.111 0.144 12.6 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320 32-2
|
||||
# hyp = {'giou': .035, # giou loss gain
|
||||
# 'xy': 0.20, # xy loss gain
|
||||
# 'wh': 0.10, # wh loss gain
|
||||
# 'cls': 0.035, # cls loss gain
|
||||
# 'cls_pw': 79.0, # cls BCELoss positive_weight
|
||||
# 'obj': 1.61, # obj loss gain
|
||||
# 'obj_pw': 3.53, # obj BCELoss positive_weight
|
||||
# 'iou_t': 0.29, # iou target-anchor training threshold
|
||||
# 'lr0': 0.001, # initial learning rate
|
||||
# 'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
|
||||
# 'momentum': 0.90, # SGD momentum
|
||||
# 'weight_decay': 0.0005} # optimizer weight decay
|
||||
|
||||
|
||||
def train(
|
||||
cfg,
|
||||
data_cfg,
|
||||
|
@ -348,7 +334,8 @@ if __name__ == '__main__':
|
|||
for _ in range(gen):
|
||||
# Get best hyperparamters
|
||||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||
x = x[x[:, 2].argmax()] # select best mAP as genetic fitness (col 2)
|
||||
fitness = x[:, 2] * 0.9 + x[:, 3] * 0.1 # fitness as weighted combination of mAP and F1
|
||||
x = x[fitness.argmax()] # select best fitness hyps
|
||||
for i, k in enumerate(hyp.keys()):
|
||||
hyp[k] = x[i + 5]
|
||||
|
||||
|
|
Loading…
Reference in New Issue