GIoU to default
This commit is contained in:
		
							parent
							
								
									b649a95c9a
								
							
						
					
					
						commit
						429bd3b8a9
					
				
							
								
								
									
										37
									
								
								train.py
								
								
								
								
							
							
						
						
									
										37
									
								
								train.py
								
								
								
								
							|  | @ -11,38 +11,24 @@ from models import * | |||
| from utils.datasets import * | ||||
| from utils.utils import * | ||||
| 
 | ||||
| #      0.149      0.241      0.126      0.156       6.85      1.008      1.421    0.07989      16.94      6.215      10.61      4.272      0.251      0.001         -4        0.9     0.0005   320 64-1 giou | ||||
| #      0.111       0.27      0.132      0.131       3.96      1.276     0.3156     0.1425      21.21      6.224      11.59       8.83      0.376      0.001         -4        0.9     0.0005 | ||||
| hyp = {'giou': 1.008,  # giou loss gain | ||||
| #     0.0945      0.279      0.114      0.131         25      0.035        0.2        0.1      0.035         79       1.61       3.53       0.29      0.001         -4        0.9     0.0005   320 | ||||
| #      0.149      0.241      0.126      0.156       6.85      1.008      1.421    0.07989      16.94      6.215      10.61      4.272      0.251      0.001         -4        0.9     0.0005   320 giou | ||||
| #      0.111       0.27      0.132      0.131       3.96      1.276     0.3156     0.1425      21.21      6.224      11.59       8.83      0.376      0.001         -4        0.9     0.0005   320 | ||||
| #      0.114      0.287      0.144      0.132        7.1      1.666      4.046     0.1364       42.6       3.34      12.61      8.338     0.2705      0.001         -4        0.9     0.0005   320 giou + best_anchor False | ||||
| hyp = {'giou': 1.666,  # giou loss gain | ||||
|        'xy': 4.062,  # xy loss gain | ||||
|        'wh': 0.1845,  # wh loss gain | ||||
|        'cls': 16.94,  # cls loss gain | ||||
|        'cls_pw': 6.215,  # cls BCELoss positive_weight | ||||
|        'obj': 10.61,  # obj loss gain | ||||
|        'obj_pw': 4.272,  # obj BCELoss positive_weight | ||||
|        'iou_t': 0.251,  # iou target-anchor training threshold | ||||
|        'cls': 42.6,  # cls loss gain | ||||
|        'cls_pw': 3.34,  # cls BCELoss positive_weight | ||||
|        'obj': 12.61,  # obj loss gain | ||||
|        'obj_pw': 8.338,  # obj BCELoss positive_weight | ||||
|        'iou_t': 0.2705,  # iou target-anchor training threshold | ||||
|        'lr0': 0.001,  # initial learning rate | ||||
|        'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf) | ||||
|        'momentum': 0.90,  # SGD momentum | ||||
|        'weight_decay': 0.0005}  # optimizer weight decay | ||||
| 
 | ||||
| 
 | ||||
| #     0.0945      0.279      0.114      0.131         25      0.035        0.2        0.1      0.035         79       1.61       3.53       0.29      0.001         -4        0.9     0.0005   320 64-1 | ||||
| #     0.112       0.265      0.111      0.144       12.6      0.035        0.2        0.1      0.035         79       1.61       3.53       0.29      0.001         -4        0.9     0.0005   320 32-2 | ||||
| # hyp = {'giou': .035,  # giou loss gain | ||||
| #        'xy': 0.20,  # xy loss gain | ||||
| #        'wh': 0.10,  # wh loss gain | ||||
| #        'cls': 0.035,  # cls loss gain | ||||
| #        'cls_pw': 79.0,  # cls BCELoss positive_weight | ||||
| #        'obj': 1.61,  # obj loss gain | ||||
| #        'obj_pw': 3.53,  # obj BCELoss positive_weight | ||||
| #        'iou_t': 0.29,  # iou target-anchor training threshold | ||||
| #        'lr0': 0.001,  # initial learning rate | ||||
| #        'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf) | ||||
| #        'momentum': 0.90,  # SGD momentum | ||||
| #        'weight_decay': 0.0005}  # optimizer weight decay | ||||
| 
 | ||||
| 
 | ||||
| def train( | ||||
|         cfg, | ||||
|         data_cfg, | ||||
|  | @ -348,7 +334,8 @@ if __name__ == '__main__': | |||
|         for _ in range(gen): | ||||
|             # Get best hyperparamters | ||||
|             x = np.loadtxt('evolve.txt', ndmin=2) | ||||
|             x = x[x[:, 2].argmax()]  # select best mAP as genetic fitness (col 2) | ||||
|             fitness = x[:, 2] * 0.9 + x[:, 3] * 0.1  # fitness as weighted combination of mAP and F1 | ||||
|             x = x[fitness.argmax()]  # select best fitness hyps | ||||
|             for i, k in enumerate(hyp.keys()): | ||||
|                 hyp[k] = x[i + 5] | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue