diff --git a/train.py b/train.py index 66514ead..34982bab 100644 --- a/train.py +++ b/train.py @@ -21,34 +21,34 @@ from utils.utils import * # 0.161 0.327 0.190 0.193 7.82 1.153 4.062 0.1845 24.28 3.05 20.93 2.842 0.2759 0.001357 -4 0.916 0.000572 # hd 320 --epochs 2 -# # ha -# hyp = {'giou': 0.8541, # giou loss gain -# 'xy': 4.062, # xy loss gain -# 'wh': 0.1845, # wh loss gain -# 'cls': 21.61, # cls loss gain -# 'cls_pw': 1.957, # cls BCELoss positive_weight -# 'obj': 22.9, # obj loss gain -# 'obj_pw': 2.894, # obj BCELoss positive_weight -# 'iou_t': 0.3689, # iou target-anchor training threshold -# 'lr0': 0.001844, # initial learning rate -# 'lrf': -4., # final learning rate = lr0 * (10 ** lrf) -# 'momentum': 0.913, # SGD momentum -# 'weight_decay': 0.000467} # optimizer weight decay - - -# hd -hyp = {'giou': 1.153, # giou loss gain +# Training hyperparameters a +hyp = {'giou': 0.8541, # giou loss gain 'xy': 4.062, # xy loss gain 'wh': 0.1845, # wh loss gain - 'cls': 24.28, # cls loss gain - 'cls_pw': 3.05, # cls BCELoss positive_weight - 'obj': 20.93, # obj loss gain - 'obj_pw': 2.842, # obj BCELoss positive_weight - 'iou_t': 0.2759, # iou target-anchor training threshold - 'lr0': 0.001357, # initial learning rate + 'cls': 21.61, # cls loss gain + 'cls_pw': 1.957, # cls BCELoss positive_weight + 'obj': 22.9, # obj loss gain + 'obj_pw': 2.894, # obj BCELoss positive_weight + 'iou_t': 0.3689, # iou target-anchor training threshold + 'lr0': 0.001844, # initial learning rate 'lrf': -4., # final learning rate = lr0 * (10 ** lrf) - 'momentum': 0.916, # SGD momentum - 'weight_decay': 0.000572} # optimizer weight decay + 'momentum': 0.913, # SGD momentum + 'weight_decay': 0.000467} # optimizer weight decay + + +# Training hyperparameters d +# hyp = {'giou': 1.153, # giou loss gain +# 'xy': 4.062, # xy loss gain +# 'wh': 0.1845, # wh loss gain +# 'cls': 24.28, # cls loss gain +# 'cls_pw': 3.05, # cls BCELoss positive_weight +# 'obj': 20.93, # obj loss gain +# 'obj_pw': 2.842, # obj BCELoss positive_weight +# 'iou_t': 0.2759, # iou target-anchor training threshold +# 'lr0': 0.001357, # initial learning rate +# 'lrf': -4., # final learning rate = lr0 * (10 ** lrf) +# 'momentum': 0.916, # SGD momentum +# 'weight_decay': 0.000572} # optimizer weight decay def train(cfg,