updates
This commit is contained in:
parent
7ee28a7bb6
commit
4050650669
15
models.py
15
models.py
|
@ -155,14 +155,17 @@ class YOLOLayer(nn.Module):
|
||||||
# io[..., 2:4] = ((torch.sigmoid(io[..., 2:4]) * 2) ** 3) * self.anchor_wh # wh power method
|
# io[..., 2:4] = ((torch.sigmoid(io[..., 2:4]) * 2) ** 3) * self.anchor_wh # wh power method
|
||||||
io[..., :4] *= self.stride
|
io[..., :4] *= self.stride
|
||||||
|
|
||||||
arc = 'normal' # (normal, uCE, uBCE) architecture types
|
arc = 'normal' # (normal, uCE, uBCE, uBCEs) detection architectures
|
||||||
if arc == 'normal':
|
if arc == 'normal':
|
||||||
io[..., 4:] = torch.sigmoid(io[..., 4:])
|
torch.sigmoid_(io[..., 4:])
|
||||||
elif arc == 'uCE':
|
elif arc == 'uCE': # unified CE (1 background + 80 classes)
|
||||||
io[..., 4:] = F.softmax(io[..., 4:], dim=4) # unified detection CE
|
io[..., 4:] = F.softmax(io[..., 4:], dim=4)
|
||||||
io[..., 4] = 1
|
io[..., 4] = 1
|
||||||
elif arc == 'uBCE':
|
elif arc == 'uBCE': # unified BCE (1 background + 80 classes)
|
||||||
io[..., 4] = io[..., 5:].max(4)[0] # unified detection BCE
|
torch.sigmoid_(io[..., 4:])
|
||||||
|
io[..., 4] = 1 - io[..., 4]
|
||||||
|
elif arc == 'uBCEs': # unified BCE simplified (80 classes)
|
||||||
|
torch.sigmoid_(io[..., 4:])
|
||||||
|
|
||||||
if self.nc == 1:
|
if self.nc == 1:
|
||||||
io[..., 5] = 1 # single-class model https://github.com/ultralytics/yolov3/issues/235
|
io[..., 5] = 1 # single-class model https://github.com/ultralytics/yolov3/issues/235
|
||||||
|
|
|
@ -321,12 +321,12 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
# Define criteria
|
# Define criteria
|
||||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]))
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]))
|
||||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]))
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]))
|
||||||
CE = nn.CrossEntropyLoss(weight=model.class_weights)
|
# CE = nn.CrossEntropyLoss(weight=model.class_weights)
|
||||||
|
|
||||||
# Compute losses
|
# Compute losses
|
||||||
bs = p[0].shape[0] # batch size
|
bs = p[0].shape[0] # batch size
|
||||||
k = bs / 64 # loss gain
|
k = bs / 64 # loss gain
|
||||||
arc = 'normal' # (normal, uCE, uBCE) architecture types
|
arc = 'normal' # (normal, uCE, uBCE, uBCEs) detection architectures
|
||||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
tobj = torch.zeros_like(pi0[..., 0]) # target obj
|
tobj = torch.zeros_like(pi0[..., 0]) # target obj
|
||||||
|
@ -342,33 +342,42 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
||||||
pxy = torch.sigmoid(pi[..., 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy)
|
pxy = torch.sigmoid(pi[..., 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy)
|
||||||
pbox = torch.cat((pxy, torch.exp(pi[..., 2:4]) * anchor_vec[i]), 1) # predicted
|
pbox = torch.cat((pxy, torch.exp(pi[..., 2:4]) * anchor_vec[i]), 1) # predicted
|
||||||
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation
|
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation
|
||||||
lbox += (k * h['giou']) * (1.0 - giou).mean() # giou loss
|
lbox += (1.0 - giou).mean() # giou loss
|
||||||
|
|
||||||
if arc == 'normal' and model.nc > 1: # cls loss (only if multiple classes)
|
if arc == 'normal' and model.nc > 1: # cls loss (only if multiple classes)
|
||||||
tclsm = torch.zeros_like(pi[..., 5:])
|
t = torch.zeros_like(pi[..., 5:]) # targets
|
||||||
tclsm[range(nb), tcls[i]] = 1.0
|
t[range(nb), tcls[i]] = 1.0
|
||||||
lcls += (k * h['cls']) * BCEcls(pi[..., 5:], tclsm) # BCE
|
lcls += BCEcls(pi[..., 5:], t) # BCE
|
||||||
# lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # CE
|
# lcls += CE(pi[..., 5:], tcls[i]) # CE
|
||||||
|
|
||||||
# Append targets to text file
|
# Append targets to text file
|
||||||
# with open('targets.txt', 'a') as file:
|
# with open('targets.txt', 'a') as file:
|
||||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||||
|
|
||||||
if arc == 'normal':
|
if arc == 'normal':
|
||||||
lobj += (k * h['obj']) * BCEobj(pi0[..., 4], tobj) # obj loss
|
lobj += BCEobj(pi0[..., 4], tobj) # obj loss
|
||||||
|
|
||||||
elif arc == 'uCE': # suggest h['cls']=5.
|
elif arc == 'uCE': # unified CE (1 background + 80 classes), hyps 20
|
||||||
udm_ce = torch.zeros_like(pi0[..., 0]).long() # unified detection matrix for CE
|
t = torch.zeros_like(pi0[..., 0], dtype=torch.long) # targets
|
||||||
if nb:
|
if nb:
|
||||||
udm_ce[b, a, gj, gi] = tcls[i] + 1
|
t[b, a, gj, gi] = tcls[i] + 1
|
||||||
lcls += (k * h['cls']) * CE(pi0[..., 4:].view(-1, model.nc + 1), udm_ce.view(-1)) # unified CE
|
lcls += CE(pi0[..., 4:].view(-1, model.nc + 1), t.view(-1))
|
||||||
|
|
||||||
elif arc == 'uBCE':
|
elif arc == 'uBCE': # unified BCE (1 background + 80 classes), hyps 200-30
|
||||||
udm = torch.zeros_like(pi0[..., 5:]) # unified detection matrix for BCE
|
t = torch.zeros_like(pi0[..., 5:]) # targets
|
||||||
if nb:
|
if nb:
|
||||||
udm[b, a, gj, gi, tcls[i]] = 1.0
|
t[b, a, gj, gi, tcls[i]] = 1.0
|
||||||
lcls += (k * h['cls']) * BCEcls(pi0[..., 5:], udm) # unified BCE (hyps 200-30)
|
lcls += BCEcls(pi0[..., 5:], t)
|
||||||
|
|
||||||
|
elif arc == 'uBCEs': # unified BCE simplified (80 classes)
|
||||||
|
t = torch.zeros_like(pi0[..., 5:]) # targets
|
||||||
|
if nb:
|
||||||
|
t[b, a, gj, gi, tcls[i]] = 1.0
|
||||||
|
lcls += BCEcls(pi0[..., 5:], t)
|
||||||
|
|
||||||
|
lbox *= k * h['giou']
|
||||||
|
lobj *= k * h['obj']
|
||||||
|
lcls *= k * h['cls']
|
||||||
loss = lbox + lobj + lcls
|
loss = lbox + lobj + lcls
|
||||||
return loss, torch.cat((lbox, ft([0]), lobj, lcls, loss)).detach()
|
return loss, torch.cat((lbox, ft([0]), lobj, lcls, loss)).detach()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue