diff --git a/train.py b/train.py index 559a8699..951d3022 100644 --- a/train.py +++ b/train.py @@ -12,18 +12,19 @@ from utils.datasets import * from utils.utils import * # 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False -hyp = {'giou': 1.666, # giou loss gain +# 0.223 0.218 0.138 0.189 9.28 1.153 4.376 0.08263 24.28 3.05 20.93 2.842 0.2759 0.001357 -5.036 0.9158 0.0005722 mAP/F1 - 50/50 weighting +hyp = {'giou': 1.153, # giou loss gain 'xy': 4.062, # xy loss gain 'wh': 0.1845, # wh loss gain - 'cls': 42.6, # cls loss gain - 'cls_pw': 3.34, # cls BCELoss positive_weight - 'obj': 12.61, # obj loss gain - 'obj_pw': 8.338, # obj BCELoss positive_weight - 'iou_t': 0.2705, # iou target-anchor training threshold - 'lr0': 0.001, # initial learning rate + 'cls': 24.28, # cls loss gain + 'cls_pw': 3.05, # cls BCELoss positive_weight + 'obj': 20.93, # obj loss gain + 'obj_pw': 2.842, # obj BCELoss positive_weight + 'iou_t': 0.2759, # iou target-anchor training threshold + 'lr0': 0.001357, # initial learning rate 'lrf': -4., # final learning rate = lr0 * (10 ** lrf) - 'momentum': 0.90, # SGD momentum - 'weight_decay': 0.0005} # optimizer weight decay + 'momentum': 0.9158, # SGD momentum + 'weight_decay': 0.0005722} # optimizer weight decay def train( diff --git a/utils/torch_utils.py b/utils/torch_utils.py index 90469ab0..3f428fd6 100644 --- a/utils/torch_utils.py +++ b/utils/torch_utils.py @@ -2,6 +2,7 @@ import torch def init_seeds(seed=0): + torch.cuda.empty_cache() torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed)