updates
This commit is contained in:
parent
cfe354064c
commit
37799efa0b
|
@ -131,16 +131,17 @@ class YOLOLayer(nn.Module):
|
||||||
return p
|
return p
|
||||||
|
|
||||||
elif ONNX_EXPORT:
|
elif ONNX_EXPORT:
|
||||||
ngu = self.ng.view((1, 1, 2))
|
# Constants CAN NOT BE BROADCAST, ensure correct shape!
|
||||||
|
ngu = self.ng.repeat((1, self.na * self.nx * self.ny, 1))
|
||||||
grid_xy = self.grid_xy.repeat((1, self.na, 1, 1, 1)).view((1, -1, 2))
|
grid_xy = self.grid_xy.repeat((1, self.na, 1, 1, 1)).view((1, -1, 2))
|
||||||
anchor_wh = self.anchor_wh.repeat((1, 1, self.nx, self.ny, 1)).view((1, -1, 2)) / self.nx
|
anchor_wh = self.anchor_wh.repeat((1, 1, self.nx, self.ny, 1)).view((1, -1, 2)) / ngu
|
||||||
|
|
||||||
# p = p.view(-1, 5 + self.nc)
|
# p = p.view(-1, 5 + self.nc)
|
||||||
# xy = torch.sigmoid(p[..., 0:2]) + grid_xy[0] # x, y
|
# xy = torch.sigmoid(p[..., 0:2]) + grid_xy[0] # x, y
|
||||||
# wh = torch.exp(p[..., 2:4]) * anchor_wh[0] # width, height
|
# wh = torch.exp(p[..., 2:4]) * anchor_wh[0] # width, height
|
||||||
# p_conf = torch.sigmoid(p[:, 4:5]) # Conf
|
# p_conf = torch.sigmoid(p[:, 4:5]) # Conf
|
||||||
# p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf
|
# p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf
|
||||||
# return torch.cat((xy / ng, wh, p_conf, p_cls), 1).t()
|
# return torch.cat((xy / ngu[0], wh, p_conf, p_cls), 1).t()
|
||||||
|
|
||||||
p = p.view(1, -1, 5 + self.nc)
|
p = p.view(1, -1, 5 + self.nc)
|
||||||
xy = torch.sigmoid(p[..., 0:2]) + grid_xy # x, y
|
xy = torch.sigmoid(p[..., 0:2]) + grid_xy # x, y
|
||||||
|
@ -152,7 +153,7 @@ class YOLOLayer(nn.Module):
|
||||||
p_cls = torch.exp(p_cls).permute((2, 1, 0))
|
p_cls = torch.exp(p_cls).permute((2, 1, 0))
|
||||||
p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent
|
p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent
|
||||||
p_cls = p_cls.permute(2, 1, 0)
|
p_cls = p_cls.permute(2, 1, 0)
|
||||||
return torch.cat((xy / self.nx, wh, p_conf, p_cls), 2).squeeze().t()
|
return torch.cat((xy / ngu, wh, p_conf, p_cls), 2).squeeze().t()
|
||||||
|
|
||||||
else: # inference
|
else: # inference
|
||||||
io = p.clone() # inference output
|
io = p.clone() # inference output
|
||||||
|
|
Loading…
Reference in New Issue