updates
This commit is contained in:
parent
926447e8c4
commit
2d57e5d877
|
@ -155,7 +155,7 @@ class YOLOLayer(nn.Module):
|
|||
# io[..., 2:4] = ((torch.sigmoid(io[..., 2:4]) * 2) ** 3) * self.anchor_wh # wh power method
|
||||
io[..., :4] *= self.stride
|
||||
|
||||
arc = 'normal' # (normal, uCE uBCE) architecture types
|
||||
arc = 'normal' # (normal, uCE, uBCE) architecture types
|
||||
if arc == 'normal':
|
||||
io[..., 4:] = torch.sigmoid(io[..., 4:])
|
||||
elif arc == 'uCE':
|
||||
|
|
|
@ -290,19 +290,19 @@ def wh_iou(box1, box2):
|
|||
|
||||
def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, model
|
||||
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
||||
lxy, lwh, lcls, lobj = ft([0]), ft([0]), ft([0]), ft([0])
|
||||
txy, twh, tcls, tbox, indices, anchor_vec = build_targets(model, targets)
|
||||
lcls, lbox, lobj = ft([0]), ft([0]), ft([0])
|
||||
tcls, tbox, indices, anchor_vec = build_targets(model, targets)
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
MSE = nn.MSELoss()
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']]))
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]))
|
||||
# CE = nn.CrossEntropyLoss() # (weight=model.class_weights)
|
||||
CE = nn.CrossEntropyLoss(weight=model.class_weights)
|
||||
|
||||
# Compute losses
|
||||
bs = p[0].shape[0] # batch size
|
||||
k = bs / 64 # loss gain
|
||||
arc = 'normal' # (normal, uCE, uBCE) architecture types
|
||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros_like(pi0[..., 0]) # target obj
|
||||
|
@ -314,45 +314,46 @@ def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, mo
|
|||
tobj[b, a, gj, gi] = 1.0 # obj
|
||||
# pi[..., 2:4] = torch.sigmoid(pi[..., 2:4]) # wh power loss (uncomment)
|
||||
|
||||
# s = 1.5 # scale_xy
|
||||
pxy = torch.sigmoid(pi[..., 0:2]) # * s - (s - 1) / 2
|
||||
if giou_loss:
|
||||
pbox = torch.cat((pxy, torch.exp(pi[..., 2:4]) * anchor_vec[i]), 1) # predicted
|
||||
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation
|
||||
lxy += (k * h['giou']) * (1.0 - giou).mean() # giou loss
|
||||
else:
|
||||
lxy += (k * h['xy']) * MSE(pxy, txy[i]) # xy loss
|
||||
lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
||||
# GIoU
|
||||
pxy = torch.sigmoid(pi[..., 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy)
|
||||
pbox = torch.cat((pxy, torch.exp(pi[..., 2:4]) * anchor_vec[i]), 1) # predicted
|
||||
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation
|
||||
lbox += (k * h['giou']) * (1.0 - giou).mean() # giou loss
|
||||
|
||||
if model.nc > 1: # cls loss (only if multiple classes)
|
||||
if arc == 'normal' and model.nc > 1: # cls loss (only if multiple classes)
|
||||
tclsm = torch.zeros_like(pi[..., 5:])
|
||||
tclsm[range(nb), tcls[i]] = 1.0
|
||||
lcls += (k * h['cls']) * BCEcls(pi[..., 5:], tclsm) # BCE
|
||||
# lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # CE
|
||||
|
||||
# udm_ce = torch.zeros_like(pi0[..., 0]).long() # unified detection matrix for CE
|
||||
# udm_ce[b, a, gj, gi] = tcls[i] + 1
|
||||
# lcls += (k * h['cls']) * CE(pi0[..., 4:].view(-1, model.nc + 1), udm_ce.view(-1)) # unified CE
|
||||
|
||||
# udm = torch.zeros_like(pi0[..., 5:]) # unified detection matrix for BCE
|
||||
# udm[b, a, gj, gi, tcls[i]] = 1.0
|
||||
# lcls += (k * h['cls']) * BCEcls(pi0[..., 5:], udm) # unified BCE (hyps 200-30)
|
||||
|
||||
# Append targets to text file
|
||||
# with open('targets.txt', 'a') as file:
|
||||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||
|
||||
lobj += (k * h['obj']) * BCEobj(pi0[..., 4], tobj) # obj loss
|
||||
loss = lxy + lwh + lobj + lcls
|
||||
if arc == 'normal':
|
||||
lobj += (k * h['obj']) * BCEobj(pi0[..., 4], tobj) # obj loss
|
||||
|
||||
return loss, torch.cat((lxy, lwh, lobj, lcls, loss)).detach()
|
||||
elif arc == 'uCE': # suggest h['cls']=5.
|
||||
udm_ce = torch.zeros_like(pi0[..., 0]).long() # unified detection matrix for CE
|
||||
if nb:
|
||||
udm_ce[b, a, gj, gi] = tcls[i] + 1
|
||||
lcls += (k * h['cls']) * CE(pi0[..., 4:].view(-1, model.nc + 1), udm_ce.view(-1)) # unified CE
|
||||
|
||||
elif arc == 'uBCE':
|
||||
udm = torch.zeros_like(pi0[..., 5:]) # unified detection matrix for BCE
|
||||
if nb:
|
||||
udm[b, a, gj, gi, tcls[i]] = 1.0
|
||||
lcls += (k * h['cls']) * BCEcls(pi0[..., 5:], udm) # unified BCE (hyps 200-30)
|
||||
|
||||
loss = lbox + lobj + lcls
|
||||
return loss, torch.cat((lbox, ft([0]), lobj, lcls, loss)).detach()
|
||||
|
||||
|
||||
def build_targets(model, targets):
|
||||
# targets = [image, class, x, y, w, h]
|
||||
|
||||
nt = len(targets)
|
||||
txy, twh, tcls, tbox, indices, av = [], [], [], [], [], []
|
||||
tcls, tbox, indices, av = [], [], [], []
|
||||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
for i in model.yolo_layers:
|
||||
# get number of grid points and anchor vec for this yolo layer
|
||||
|
@ -389,24 +390,17 @@ def build_targets(model, targets):
|
|||
gi, gj = gxy.long().t() # grid x, y indices
|
||||
indices.append((b, a, gj, gi))
|
||||
|
||||
# XY coordinates
|
||||
gxy -= gxy.floor()
|
||||
txy.append(gxy)
|
||||
|
||||
# GIoU
|
||||
gxy -= gxy.floor() # xy
|
||||
tbox.append(torch.cat((gxy, gwh), 1)) # xywh (grids)
|
||||
av.append(anchor_vec[a]) # anchor vec
|
||||
|
||||
# Width and height
|
||||
twh.append(torch.log(gwh / anchor_vec[a])) # wh yolo method
|
||||
# twh.append((gwh / anchor_vec[a]) ** (1 / 3) / 2) # wh power method
|
||||
|
||||
# Class
|
||||
tcls.append(c)
|
||||
if c.shape[0]: # if any targets
|
||||
assert c.max() <= model.nc, 'Target classes exceed model classes'
|
||||
|
||||
return txy, twh, tcls, tbox, indices, av
|
||||
return tcls, tbox, indices, av
|
||||
|
||||
|
||||
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.5):
|
||||
|
|
Loading…
Reference in New Issue